
Chapter 3

The Coalescent

To coalesce means to grow together, to join, or to fuse. When two copies of a gene are descended
from a common ancestor which gave rise to them in some past generation, looking back we
say that they coalesce in that generation. Seen forward in time, coalescent events are simply
DNA replication events, and are only of special interest due to their place in the history of
a particular sample. Kingman (1982a,b) showed that the joining up of lineages into common
ancestors is described by a particular mathematical process, and he called this process the n-
coalescent. Here we will see how Kingman’s coalescent arises in the context of the two most
commonly applied models of a population, the Wright-Fisher model and the Moran model, and
discuss its applicability to a host of other models. From section 1.1 we have some familiarity
with genealogies and their structure. In this chapter the coalescent genealogy of a sample is
considered without reference to any observed variation in the sequences. This is possible, first
because every sample of gene copies has a genealogy even if it displays no variation. Second, for
the moment we assume that all variation is selectively neutral. By definition, this means that
an individual’s genotype has no effect on the number of descendents it leaves, and thus no effect
on the genealogy of a sample. Much of the simplicity and elegance of the coalescent approach
stems from the fact that, when variation is neutral, the genealogical process and the mutational
process are independent and can be considered separately. Mutations and genetic data are the
subject of Chapter 4.

3.1 Population Genetic Models

Theoretical studies of the genetics of populations rely on our ability to construct models which
capture the essential biological features of populations but which are idealized enough to be
mathematically tractable. Two such models have been the basis of most work in population
genetics: the Wright-Fisher model and the Moran model. Neither of these was developed to
fit the known biology of any particular organism. However, both are members of a broad class
of models that describe many different breeding structures and which encompass a range of
biologically reasonable assumptions about populations. Importantly, all of these models yield
the coalescent under certain limiting conditions. The Wright-Fisher model represents a case
of perfectly non-overlapping generations and the Moran model represents an idealized case of
overlapping generations. Real populations might exist somewhere between these two extremes.
The coalescent is an approximation to the ancestral process for a sample under the Moran model
and the Wright-Fisher model when the population size is large, although some features of the
coalescent are exact for the Moran model. We begin with a forward-time description of these
two models, then later consider how the ancestral process is obtained.
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42 CHAPTER 3. THE COALESCENT

3.1.1 The Wright-Fisher Model

The model introduced by Fisher (1930) and Wright (1931) assumes that all of the individuals
in the population die each generation and are replaced by offspring. The population size N
is assumed to be constant over time and finite. Because the population is finite in size and
reproduction is a random process, some individuals may not contribute any offspring to the
next generation. This random loss of genetic lineages forward in time is called genetic drift.
Backward in time it is the source of the coalescent process. The Wright-Fisher model can be
applied to haploid organisms, in which case the population will consist of N copies of the genome,
or to diploid organisms, in which case there will be 2N copies. Assuming a diploid organism is
probably the most common convention, but the coalescent best viewed at the start as a haploid
model. In fact, many apparently diploid models can be reduced to haploid models, the exception
being when diploidy has direct consequences on the dynamics of the population, such as when
diploid migration occurs or when alleles exhibit dominance under natural selection. In most
of what follows, we will assume a haploid organism. We will consider the applicability of the
coalescent to diploid organisms in Chapter 7, but note here that it applies to diploids just as
well as any other neutral population genetic model if we simply replace N below with 2N .

The Wright-Fisher model assumes that the ancestors of the present generation are obtained
by random sampling with replacement from the previous generation. Looking forward in time,
consider the familiar starting point of classical population genetics: two alleles, A and a, segre-
gating in the population. Let i be the number of copies of allele A, so that N − i is the number
of copies of allele a. Thus the current frequency of A in the population is p = i/N , and the
current frequency of a is 1− p. We assume that there is no difference in fitness between the two
alleles, that the population is not subdivided, and that mutations do not occur. This gives the
familiar formula,

Pij =
(
N

j

)
pj(1 − p)N−j 0 ≤ j ≤ N, (3.1)

for the probability that a gene with i copies in the present generation is found in j copies in
the next generation. Let the current generation be generation zero and Kt represent the counts
of allele A in future generations. Equation 3.1 states that K1 is binomially distributed with
parameters N and p = i/N , given K0 = i. Therefore, from (2.39) and (2.40) we have

E[K1] = Np = i, (3.2)

Var[K1] = Np(1 − p). (3.3)

The number of copies of A is expected to remain the same on average, but in fact may take any
value from zero to N . A particular variant may become extinct (go to zero copies) or fix (go to
N copies) in the population even in a single generation. Over time, the frequency of A will drift
randomly according to the Markov chain with transition probabilities given by equation 3.1,
and eventually one or the other allele will be lost from the population. Ewens (2004) gives an
excellent treatment of the forward-time dynamics of this model.

Perhaps the easiest way to see 3.1 is through a biologically motivated example. Imagine
that before dying each individual in the population produces a very large number of gametes.
However, the population size is tightly controlled so that only N of these can be admitted into
the next generation. The frequency of allele A in the gamete pool will be i/N , and because there
are no fitness differences, the next generation is obtained by randomly choosing N alleles. The
connection to the binomial distribution, as discussed above in Section 2.1.2 is clear: we perform
N trials, each with p = i/N chance of success. Because the gamete pool is so large, it is not
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depleted by this sampling, so the probability i/N is the same for each trial. The distribution of
the number of A alleles in the next generation is binomial(N, i/N) as equation 3.1 indicates.

Before we take up the backward, ancestral process for the Wright-Fisher model in the next
chapter, we will use a classical derivation and result to see the difference in rates of genetic drift
between this model and the Moran model described below. The heterozygosity of a population
is defined to be the probability that two randomly sampled gene copies are different. For
a randomly mating diploid population, this is equivalent to the chance that an individual is
heterozygous at a locus. Let the current generation be generation zero, and let p0 be the
frequency of A now. The heterozygosity of the population now is equal to H0 = 2p0(1 − p0),
which is just the binomial chance that one allele A (and one a) is chosen in two random draws.
Let the random variable Pt represent the frequencies of A in each future generation t. Then
in the next generation the heterozygosity will be H1 = 2P1(1 − P1). However, H1 will vary
depending on the random realization of the process of genetic drift described by equation 3.1.
On average,

E[H1] = E[2P1(1 − P1)]

= 2
(
E[P1] − E[P1]2 − Var[P1]

)
= 2p0(1 − p0)

(
1 − 1

N

)

= H0

(
1 − 1

N

)
,

and this shows that heterozygosity is lost through genetic drift. The derivation above uses
P1 = K1/N together with equations 3.2 and 3.3, and the simple rules of Section 2.1, such as
equation 2.19. After t generations, we have

E[Ht] = H0

(
1 − 1

N

)t

≈ H0 e
−t/N (3.4)

with the approximation being valid for large N (see equation 2.48). In the Wright-Fisher model,
heterozygosity decays at rate 1/N per generation. The decrease of heterozygosity is a common
measure of genetic drift, and we say that the drift occurs in the Wright-Fisher model at rate
1/N per generation.

3.1.2 The Moran Model

The Wright-Fisher model is the one most widely used in population genetics, but another model,
due to Moran (1958,1962) is also very well studied. The Moran model has been important for
two reasons. First, in contrast to the Wright-Fisher model, it applies to organisms in which
generations are overlapping. Second, it has been important from the mathematical point of
view, because many results can be derived exactly under the Moran model that are available
only approximately under the Wright-Fisher model.

The Moran model is formulated with haploid organisms explicitly in mind, and again we
assume that the population size is N . In this model, at times t = 0, 1, 2, . . . , two individuals
are chosen at random with replacement from the population. These might be the same or they
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might be different individuals. Each individual in the population has a 1/N chance of being
chosen in each draw. The first individual chosen reproduces, i.e. copies itself, and the second
one dies. Thus, if the same individual was chosen twice, it would reproduce itself then die and
the state of the population would not change. Again let there be i copies of allele A and N − i
copies of allele a, and let j be the number of copies of allele A after one time unit. Now K1

can assume only three possible values: i + 1, i, and i − 1. The probability that i increases is
equal to the probability that an a allele is chosen to die times the probability that an A allele
is chosen to reproduce. Again using p = i/N , and continuing this line of reasoning to the other
two possible transitions gives

Pij =



p(1 − p) if j = i+ 1,

p(1 − p) if j = i− 1,

p2 + (1 − p)2 if j = i,

0 otherwise.

Thus, in contrast to a Wright-Fisher population, under the Moran model one of just three things
must happen in one time unit: allele A increases in number by one, allele a increases in number
by one, or the counts stay the same.

From this is not difficult to compute the expectation and variance of K1 directly using
equations 2.10 and 2.11 and with i = Np:

E[K1] = (Np+ 1)p(1 − p) + (Np− 1)p(1 − p) +Np
[
p2 + (1 − p)2

]
= Np

[
p(1 − p) + p(1 − p) + p2 + (1 − p)2

]
= Np (3.5)

Var[K1] = (1)2p(1 − p) + (−1)2p(1 − p) + (0)2
[
p2 + (1 − p)2

]
= 2p(1 − p). (3.6)

As in the Wright-Fisher model, random genetic drift leads to variation in the number of copies
of A, but since it is unbiased, the expected number in the next generation is equal to the number
in the current generation.

Using these equations and considering the heterozygosity of the population, after one time
unit,

E[H1] = E[2P1(1 − P1)]

= 2p0(1 − p0)
(

1 − 2
N2

)

= H0

(
1 − 2

N2

)
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After t time units , we have

E[Ht] = H0

(
1 − 2

N2

)t

≈ H0 e
−2t/N2

(3.7)

Thus the rate of genetic drift per time unit in the Moran model is equal to 2/N2.
To make this comparable to drift in the Wright-Fisher model, we can define a generation

under the Moran model to be equal to N steps, or birth-death events. Looked at from the point
of view of an individual this makes sense as well. The probability that a particular individual
dies in one time unit is 1/N , so the lifetime of an individual is geometrically distributed with
parameter 1/N (see equation 2.41). From 2.44 we can see that the lifetime of an individual has
mean N steps, so it is natural to interpret this as one generation. If we rescale time accordingly
by defining τ = t/N , equation 3.7 becomes

E[Hτ ] ≈ H0 e
−2τ/N (3.8)

Comparison to equation 3.4 shows that, with equivalent definitions of a generation, the rate of
genetic drift is twice as fast in the Moran model as it is in the Wright-Fisher model. This is
interesting from a biological standpoint because it means that differences in breeding structure
can lead to differences in time scale of change in the population even though the way in which
it changes (e.g. exponential decay as above) may be the same for different kinds of populations.
This factor of two increase in the rate of drift in the Moran model is not a consequence of gen-
erations being overlapping. It is due, instead, to differences the distribution of offspring number
among individuals in the population under Wright-Fisher-type versus Moran-type reproduction
(Moran and Watterson, 1959; Feldman, 1966), as we will see in Section 3.2.3 below.

3.2 The Standard Coalescent Model

We begin with the simplest statement of the coalescent model. Kingman (1982a,b,c) proved
this to be limiting ancestral process for a broad class of populations structures that includes the
Wright-Fisher model and the Moran model. We trace the ancestral lineages, which are the series
of genetic ancestors of the samples at a locus, back through time. The history of a sample of size
n comprises n − 1 coalescent events. Each coalescent event decreases the number of ancestral
lineages by one. This takes the sample from the present day when there are n lineages through
a series of steps in which the number of lineages decreases from n to n− 1, then from n− 1 to
n − 2, etc., then finally from two to one. The single lineage remaining at the final coalescent
event is the most recent common ancestor (MRCA) of the entire sample. At each coalescent
event, two of the lineages fuse into one common-ancestral lineage. The result is a bifurcating
tree like the one shown in figure 3.1. The times Ti on the right in figure 3.1 are the times during
which there were exactly i lineages ancestral to the sample.

Thus, the coalescent is a stochastic process, like the ones considered in Chapter 2, only a little
more complicated because it includes both a discrete tree structure and n− 1 coalescence time
intervals. The state space of genealogies is the set of all possible rooted birfurcating trees with
labelled tips and nodes ordered in time, with coalescence times 0 < Ti < ∞ for 2 ≤ i ≤ n. Any
particular genealogy, or realization of the coalescent process, will specify the branching pattern
of relationships among the members of the sample and the coalescence times. Genealogies can
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Figure 3.1: A coalescent genealogy of a sample of n = 9 items.

provide information about the population from which the sample was taken just as successive
coin tosses provide information about the properties, e.g. fairness, of a coin. Thus, genealogies
must be treated in a statistical setting. Unlike the result of a coin toss, however, genealogies
cannot be observed directly. Information about genealogical history is inferred from patterns of
polymorphism in a sample, which in turn result from another random process: mutation (see
Chapter 4).

With a short but far-reaching list of assumptions about the population, it is possible to
describe the probability distributions of both genealogical trees and coalescence times. These
assumptions are:

1. Genetic differences have no consequences on fitness.

2. The population is not subdivided, geographically or otherwise.

3. The size of the population is constant over time.

The first and second assumptions above — that all genetic variation is selectively neutral and
that the population is well-mixed, or panmictic — are two aspects of what is probably better
veiwed as a single assumption. Namely, it is assumed that the number of offspring an individual
has is independent of any labels that might be assigned to it, e.g. its allelic state or its geo-
graphic location. This can be seen clearly in sections 3.1.1 and 3.1.2, for the case of allelic states
as labels. We say that the numbers of offspring among individuals in the population are ex-
changeable random variables. Exchangeability means identically distributed but not necessarily
independent; for details see Kingman (1982c) and Aldous (1985). We will take a closer look at
exchangeability in Section 3.2.3, but note for now that the non-independence of the numbers
of offspring in the population is a consequence of the third assumption above, that the total
number of offspring is fixed.
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Kingman (1982a,b) showed that in the limit as N goes to infinity, the coalescence times Ti
are independent and exponentially distributed as

fTi(ti) =
(
i

2

)
e−( i

2 )ti ti ≥ 0, i = 2, . . . , n (3.9)

when time is measured appropriately. In the next two sections, we will see what the appropriate
units of time are under the Wright-Fisher and Moran models. Because they are exponentially
distributed, the mean and the variance (see equation 2.51) of the times to coalescence are

E[Ti] =
2

i(i− 1)
, (3.10)

Var[Ti] =
(

2
i(i− 1)

)2

. (3.11)

From equation 3.10, it is clear that the most ancient coalescence time, the one in which the
remaining two lineages coalesce into the MRCA of the entire sample, is expected to be the
longest. The coalescence times in figure 3.1 are drawn in proportion to their expected values.
Especially in a large sample, many coalescent events will occur over a very short period of time
in the recent history of the sample. Because the coalescence times are mutually independent,
we have

fTn,... ,T2(tn, . . . , t2) =
n∏
i=2

fTi(ti). (3.12)

In addition, at each coalescent event, every pair of lineages is equally likely to be the pair that
coalesces. This means that every possible genealogical tree structure is equally likely. All of
the remarkable results of the standard coalescent model follow directly from these two proper-
ties: the random-joining or random-bifurcating nature of coalescent trees, and the independent,
exponential coalescence times.

The formal proof of the above statements for a general, exchangeable population model is a
little too technical for us here; see Kingman’s original papers and the recent work of Möhle (e.g.,
2001). With reference to the discussion of Poisson processes in Chapter 2, we can recognize that
the exponential distribution in equation 3.9 is consistent with a Poisson process in which each
of the i(i − 1)/2 possible pairs coalesces independently with rate λ = 1. We can also suspect
that the way the limiting, continuous-time coalescent is obtained within any particular model of
a population must be like the way in which the binomial distribution became a Poisson and the
geometric distribution became an exponential when the probability of success became very small
(but here with N → ∞). The next two sections illustrate these notions in heuristic derivations of
the coalescent under the Wright-Fisher and Moran models, drawing heavily upon the excellent
work of Watterson (1975), Hudson (1983a,1990), Tajima (1983), and Tavaré (1984). Interested
readers should also consult the reviews of coalescent theory by Donnelly and Tavaré (1995) and
Nordborg (2001).

3.2.1 Wright-Fisher Model Derivation

Kingman (1982a,b) proved that the coalescent process describes the ancestral genetic process for
a sample of fixed size n in the limit as N approaches infinity in the Wright-Fisher model. The
ancestral process starts from a present day sample of n gene copies, e.g. DNA sequences at some
genetic locus, and traces the ancestral lineages of the sample back to the most recent common
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ancestor. Again, a lineage at a particular generation in the past is represented by an individual
whose genome contains material directly ancestral to one or more of the samples. The n gene
copies, or sequences, which we can also think of as the lineages at time zero of the ancestral
process, are assumed to have been sampled without replacement from the population. Sampling
without replacement is what empiricists do in practice, unless there is something to prevent it,
and this guarantees that all n members of the sample represent distinct genetic lineages. The
requirement that N approaches infinity while n remains fixed is typically stated as n � N (n
is much less than N), because we use the coalescent as an approximation to the behavior of a
relatively small sample from a large population rather than a truly infinite one.

Assume for the moment that N is not necessarily large. The Wright-Fisher model assumes
that the j ancestors of i lineages are sampled randomly with replacement from the N individuals
present in the previous generation. Each parent has chance 1/N of being chosen as the parent
of each lineage, and we can think of this process as tossing i balls randomly into N boxes. If two
or more balls wind up in the same box we say that those lineages have a common ancestor in the
previous generation. Thus, when all i balls fall into distinct boxes, the number of ancestors, j,
is equal to i. At the other extreme, if all i balls land in the same box, then j is equal to one and
all the lineages share a common ancestor in the previous generation. This process leads to the
following single-generation transition probability, the probability that i lineages are descended
from j ancestors in the immediately previous generation:

Gi,j =
S

(j)
i N[j]

N i
1 ≤ j ≤ i (3.13)

(Watterson, 1975), in which N[j] = N(N−1) · · · (N−j+1) is a descending factorial, and S
(j)
i are

Stirling numbers of the second kind. The distribution given by equation 3.13 is an example of
an occupancy distribution; see Johnson, Kotz, and Kemp (1993) for a recent thorough account
of these well-studied distributions.

The Stirling number of the second kind S
(j)
i is the number of ways of a set of i elements

can be partitioned into j subsets. For example, consider Gi,i−1, which is the probability that
i lineages have i − 1 ancestors in the previous generation. Recalling Table 2.1 for the case of
coin tosses, we could enumerate all the possible ways of throwing i balls into N boxes, then
group them according to the number of occupied boxes. Each arrangement in which i− 1 boxes
were occupied would represent the case where a single pair of lineages had a common ancestor
and the other i − 2 had distinct ancestors. Each of these arrangements would have the same
probability N[i−1]/N

i and there would be

S
(i−1)
i =

(
i

2

)
=

i(i− 1)
2

of them because this is the number of possible pairs. Stirling numbers of the second kind can
be generated recursively using S

(1)
i = 1 and

S
(j)
i = S

(j−1)
i−1 + jS

(j)
i−1 (3.14)

for j = 2, 3, . . . , i− 1, and with S
(i)
i = 1. They also satisfy the equation

xi =
i∑

j=1

S
(j)
i x[j], (3.15)

which shows that the distribution given by equation 3.13 sums to one over j = 1, 2, . . . , i. There
are also Stirling numbers of the first kind, and we will see these in Section 4.2. Abramowitz and
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j

1 2 3 4 5 6 7 8 9 10

10 0.017 0.129 0.345 0.356 0.136 0.016

20 0.008 0.062 0.224 0.372 0.268 0.065

50 0.003 0.030 0.166 0.419 0.382

N 100 0.005 0.056 0.311 0.628

200 0.016 0.187 0.796

500 0.003 0.084 0.913

1000 0.001 0.043 0.956

Table 3.1: The probability Gi,j , that i = 10 sequences have j ancestors in the immediately
previous generation for different values of N . Values < 10−3 are omitted for readability.

Stegun (1964) list many properties of Stirling numbers, tabulate their values, and give further
references.

Returning to equation 3.13 we can see that Kingman’s coalescent does not apply exactly to
the Wright-Fisher model when the population size N is not large. In the Wright-Fisher model,
i lineages might have anywhere from j = 1 to j = i ancestors in the immediately previous
generation. The coalescent, however, admits only j = i and j = i − 1, that at most two out
of the i share a common ancestor in any generation. Table 3.1 lists Gi,j of equation 3.13 for a
sample of size ten, or for ten lineages, as N increases. When N is equal to ten, it is most likely
that there are six or seven ancestors of the ten lineages in the previous generation. Thus there
will often be three or four coalescent events in one generation. Scanning down any column, we
see that the chance that there are j < i ancestors decreases rapidly as N increases, while the
chance that there are j = i approaches one. By the time N is as big as 1000, nearly all of the
probability mass is found at j = i − 1 and j = i, and the probabilities for j < i − 1 become
insignificant in comparison. This implies that the requirement of the coalescent, that at most
one coalescent event occurs in given generation, is met, but it is difficult to extract much more
than this from table 3.1.

Using equation 3.13 and the image of balls and boxes, we can show that the Wright-Fisher
model yields the coalescent when N is very large. Consider Gi,i, the probability that i lineages
have i distinct ancestors in the immediately previous generation. The first of ball is thrown
randomly, and it lands in one of the N boxes. This is the ancestor of the first sequence. Now
there are N − 1 empty boxes, so the chance that the next ball thrown lands in an unoccupied
box is equal to (N − 1)/N . This is the probability that the first two sequences have different
ancestors, that they do not coalesce. The chance that the third ball thrown also lands in an
empty box is then (N − 2)/N , and so on. Continuing, and simplifying, we obtain

Gi,i =
(
N − 1
N

) (
N − 2
N

)
· · ·

(
N − (i− 1)

N

)

=
(

1 − 1
N

) (
1 − 2

N

)
· · ·

(
1 − i− 1

N

)

= 1 −
∑i−1

j=1 j

N
+ o

(
1
N

)
,
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where, as in equation 2.49, the notation o(1/N) represents terms that decrease to zero faster
than 1/N as N tends to infinity. The sum in the numerator of the second term on the right
above is equal to the binomial coefficient i(i− 1)/2, which can be seen from equation 2.38 and
Table 2.2). Similarly, from equation 3.13 we obtain

Gi,i−1 =
S

(i−1)
i N[i−1]

N i

=

(
i
2

)
N

(
1 − 1

N

) (
1 − 2

N

)
· · ·

(
1 − i− 2

N

)

=

(
i
2

)
N

+ o

(
1
N

)
(3.16)

since S(i−1)
i = i(i− 1)/2 as noted above. All other Gi,j , with j < i− 1, are o(1/N).
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Figure 3.2: The Wright-Fisher model’s convergence to the coalescent.

Thus, as N becomes larger and larger, the ancestral process for i lineages becomes like a
series of Bernoulli trials with a constant probability Gi,i−1 = i(i − 1)/(2N) each generation of
success. Success in this case means that a single pair of lineages coalesces. Figure 3.2 shows the
percent error of this approximation for i = 10, as a function of N . Specifically, the curve plots
the difference between the full expression for Gi,i−1 from equation 3.16 and the approximation
Gi,i−1 = i(i− 1)/(2N) as a percentage of the full Gi,i−1. Using equation 3.16 we can show that
this will be very close to (i − 1)(i − 2)/(2N), or 36/N when i = 10, as long as N is not too
small. As an aside, note that this exposes a shortcoming of the use of the relatively weak o(1/N)
conditions above, for example in equation 3.16. In fact, we know that these terms are of order,
or proportional to, 1/N2 and so will decrease to zero much more quickly than o(1/N) requires
(1/Np where p > 1; see equation 2.49). The curve in figure 3.2 begins at N = 1000, which is
the largest value of N in table 3.1 with an error of only about 3.6%, and it drops quickly to less
than 1% when N is greater than 3600. This illustrates that the coalescent can be a reasonable
approximate model for a large finite population.

Formally, in the limit as N tends to infinity the ancestral process under the Wright-Fisher
model converges to the continuous-time coalescent process described by Kingman. Time is
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measured in units of N generations, and we can express this limiting results in terms of (one
minus) the distribution function, or

P{T (N)
i > t} = (1 −Gi,i)[Nt] −→ e−( i

2 )t as N → ∞,

which is identical to that of the exponential distribution (see equation 2.61) with parameter
(
i
2

)
.

The notation [Nt] above means the integer part of Nt. It simply recognizes the fact that, while
t can assume any value greater than zero, the geometric probability (1 − Gi,i)[Nt] makes sense
only for whole generations; this discrepancy become negligible as N approaches infinity.

3.2.2 Moran Model Derivation

In the previous section, we saw that the coalescent holds in the Wright-Fisher model only in the
limit of very large population size. For finite N it was necessary to consider the possibility of
multiple coalescent events in a single generation. However, the derivation above was relatively
simple because the Wright-Fisher model is formulated in a way that makes it well-suited for a
retrospective approach: the parents of the current generation are obtained by random sampling
with replacement from the previous generation. The Moran model provides an important coun-
terpoint to this. First, there is no possibility of multiple coalescent events in a single time step,
so the structure of the finite-N process is less complicated than in the Wright-Fisher model.
Second, the Moran model does not include a simple, ready-made description of an ancestral
process. Instead, the ancestral process must be obtained by considering both the sampling of
lineages and the process of reproduction forward in time in the population. This is required
in the analysis of most models, for example those in the next section, and the Moran model
provides an instructive setting for becoming familiar with this approach.

As before, the ancestral process begins with a sample of size n taken randomly without
replacement from the population, and the same considerations apply to the ancestry of i lineages
that existed at some time in the history of the sample. Now we must account for the various
possible states of the population when the sample was taken. Fortunately, under the reproductive
scheme of the Moran model, in a single time step only two things can happen in the population.
With probability 1/N , the same individual is chosen to reproduce and to die. We note in passing
that here a mutation might occur, although we continue to ignore mutation until Chapter 4.
What is important here is that, in this case, a single offspring replaces its parent, so a common
ancestor event between two lineages is impossible, both in the whole population and among the
lineages ancestral to a sample. On the other hand, with probability 1 − 1/N , the individual
chosen to reproduce is different than the individual chosen to die. In this case, the individual
who reproduces survives and its offspring replaces the individual who dies. This represents the
birfucation of one lineage, so looking backwards in time a common ancestor event occurs in the
total population. There is no possibility of multiple coalescent events in a single time step.

However, a common ancestor event somewhere in the population is not guaranteed to occur
among some smaller number, i, of ancestral lineages. This requires, in addition, that the i
lineages contain both the individual who reproduced and its offspring. We label the offspring 1
and its parent 2, and these now coexist in the population. Then the probability that i lineages
randomly sampled without replacement include both of these individuals can be computed as

P{1 in sample ∩ 2 in sample} = 1 − P{1 not in sample ∪ 2 not in sample},

or one minus the probability that 1 or 2 (or both) are not in the sample. The term on the right
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is readily calculated using as

P{1 not in sample ∪ 2 not in sample} = P{1 not in sample} + P{2 not in sample}

− P{1 not in sample ∩ 2 not in sample}

which is a straightforward application of equation 2.8.
Random sampling without replacement can be envisioned as tossing balls into boxes, but with

the provision that occupied boxes are prohibited from receiving any more balls. By computing
the probabilities that box 1 remains empty after each ball is tossed and mutliplying these
together, we have

P{1 not in sample} =
(
N − 1
N

) (
N − 2
N − 1

)
· · ·

(
N − 1 − (i− 1)
N − (i− 1)

)
=

N − i

N
.

The same considerations for box 2 show that P{2 not in sample} is identical to this. Using the
same approach, we have

P{1 not in sample ∩ 2 not in sample} =
(
N − 2
N

) (
N − 3
N − 1

)
· · ·

(
N − 1 − (i− 1)
N − (i− 1)

)

=
(N − i)(N − 1 − i)

N(N − 1)
.

Putting all of this together gives

P{1 in sample ∩ 2 in sample} = 1 − 2
N − i

N
+

(N − i)(N − 1 − i)
N(N − 1)

=
i(i− 1)
N(N − 1)

,

which again is the probability that the i lineages contain both the parent and its offspring, and
thus that two of sample lineages have a common ancestor in the previous generation, given that
such an event can occur.

In all, the chance that a common ancestor event occurs among the i lineages is equal to
the probability that reproduction in the population makes it possible, i.e. that the offspring
individual does not replace its parent, multiplied by the probability that both the offspring and
its parent are among the i sample lineages:

Gi,i−1 =
(

1 − 1
N

)
i(i− 1)
N(N − 1)

=
(
i

2

)
2
N2

. (3.17)

Because we know that only one other event is possible. i.e. no common ancestor event, we have
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Gi,i = 1 −Gi,i−1. For completeness, we can calculate Gi,i easily using the above logic:

Gi,i =
1
N

+
(

1 − 1
N

) (
1 − i(i− 1)

N(N − 1)

)

= 1 −
(
i

2

)
2
N2

. (3.18)

Thus, as noted above, one aspect of the coalescent is an exact result for the Moran model: only
two lineages can coalesce at a time. However, to obtain the continuous-time ancestral process
given by equation 3.9, it is still necessary to take the limit as N goes to infinity, and to measure
time in units of N2/2 Moran model time steps.

3.2.3 Breeding Structure and Exchangeability

The previous two sections show that the ways in which time must be rescaled in order to obtain
Kingman’s coalescent process in the Wright-Fisher model and in the Moran model are the same
as the rates of genetic drift, specifically the loss of heterozygosity, in these two models calculated
in Section 3.1. This is not too surprising because, in some fundamental sense, the coalescent
process is genetic drift viewed backwards in time. More than three decades ago, Felsenstein
(1971) showed that the rate of loss of alleles in a population that contains i alleles now is related
to Gi,i, and a number of other intimate connections between forward and backward processes
in population genetic models have been established. Ewens (1990) reviews many of these, and
Möhle (e.g. 2001) has made important recent extensions. In this section, we will see how the
time scales of the ancestral processes in the Wright-Fisher model and in the Moran model are
related to Kingman’s (1982b) definition of the effective size of the population: Ne = N/σ2 where
σ2 is the variance in the numbers of offspring of individuals in a large population (see below).
More importantly, we will return to the concept of exchangeability introduced in Section 3.2,
and investigate its biological meaning in a simple example.

Cannings (1974) described the following class of exchangeable-type population models. Let
the random variable Yi count the number of offspring of individual i in the population, and let
yi be a particular instance of Yi. Each individual in the population is assumed to have the same
distribution of offspring number, but of course these are correlated because the total population
number N is assumed to be constant. That is, every realization (y1, y2, . . . , yN ) of the process
of reproduction in the population must satisfy the constraint

∑N
i=0 yi = N . Thus, the Yi are

exchangeable random variables, which means that anything we wish to compute will not depend
on the labels of the individuals (Aldous, 1985). We can take exchangeability to mean identically
distributed but not independent. Because they are identically distributed and must sum to N ,
the expected number of offspring is E[Yi] = 1 for all such models. It is further assumed that
the offspring-number distribution does not change over time. Finally, we note an important
property of the population, which is that the numbers of offspring of an individual in different
generations are independent, and we can see this as a consequence of fact that the individuals
can be relabelled each generation without any effect.

In the Wright-Fisher model, the joint distribution of the numbers of offspring each generation
of the N individuals in the population is multinomial with parameters N and p1 = p2 = · · · =
pN = 1/N . The multinomial distribution is just a generalization of the binomial distribution, in
which several different outcomes are possible in each trial. Here, the different possible outcomes
are that individual i (1 ≤ i ≤ N) is the parent of some member of the next generation. We have

P (Y1 = y1, . . . , YN = yN ) =
N !

y1! · · · yN !
py1
1 · · · pyN

N (3.19)
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and with p1 = p2 = · · · = pN = 1/N , we obain E[Yi] = Npi = 1 and

Var[Yi] = Npi(1 − pi) = 1 − 1
N
,

Cov[Yi, Yj ] = −Npipj = − 1
N
,

for the Wright-Fisher model. See Chapter 35 of Johnson, Kotz and Balakrishnan (1997) for
a description of the multinomial distribution and its properties. The binomial distribution
is a special case of the multinomial distribution, so the equations above can be compared to
equations 2.39 and 2.40. Note that yi can be any number from zero to N , but because the total
number of offspring must be equal to N , the these numbers are strongly correlated when N is
small. For example, if N = 2 and one individual has two offspring, the other must have no
offspring. As N increases, these correlations become weak. In the limit as N goes to infinity,
the distribution of the number of offspring of an individual becomes Poisson with expectation
(and variance) equal to one, which is how Fisher (1922) conceived of this model.

While every generation in the Wright-Fisher model begins with N newly-produced offspring,
under the Moran model individuals can persist. Therefore, we take “offspring” in the Moran
model to include both the individual itself, if it persists, and its offspring in the usual sense.
The joint distribution of Y1, . . . , YN in the Moran model is not one of the well-known statistical
distributions. It is obtained by considering the choice of one individual to reproduce and one
individual to die, where in both cases the chance that a particular individual is chosen is equal
to 1/N . Thus, every one of the N2 possible pairs of individuals is equally likely. There are N
pairs in which the same individual is chosen to die and to reproduce. In this case the offspring
replaces its parent and every member of the population contributes one individual to the next
generation (Y1 = · · · = YN = 1). There are N(N − 1) pairs in which different individuals are
chosen to reproduce and to die, and again each of these has probability 1/N2. In this case, the
individual i who reproduces has Yi = 2 and the individual j �= i has Yj = 0. Therefore, we have

P (Y1 = y1, . . . , YN = yN ) =



1
N

if y1 = · · · = yN = 1,

1
N2

if (yi, yj) = (2, 0) i �= j, yr = 1 for all r �= i, j,

0 otherwise.

(3.20)

The top term on the right includes all the possibilities for choosing the same individual to
reproduce and to die.

The expectation and variance of the number of offspring Yi of an individual in the Moran
model can be obtained using equation 3.20, or directly from equations 3.5 and 3.6 in Section 3.1.2
by considering an allele in single copy, that is with frequency p = 1/N . The covariance of Yi and
Yj can be obtained from equation 3.20 by noting that the product (Yi − E[Yi])(Yj − E[Yj ]) =
(Yi − 1)(Yj − 1), is only non-zero when one individual leaves two descendents and the other
leaves zero. Again E[Yi] = 1, and we have

Var[Yi] =
2
N

(
1 − 1

N

)
,

Cov[Yi, Yj ] = − 2
N2

.
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Again we can see that the covariance approaches zero as N grows. In constrast to the Wright-
Fisher model, the variance also has this property, although the approach to zero is N times
slower than for the covariance.

In addition to the Wright-Fisher model and the Moran model, Kingman (1982b) showed
that the coalescent holds for a subset of the exchangeable-type population models of Cannings
(1974) in the limit as N tends to infinity and with time rescaled appropriately. In particular,
Kingman assumed that variance of offspring number in this limit,

lim
N→∞

Var[Yi] = σ2,

was finite and non-zero (0 < σ2 < ∞). The Wright-Fisher model satisfies this criterion, and
has σ2 = 1, but the Moran model does not, with σ2 = 0. The Moran model must be treated
separately, and yet as Section 3.1.2 shows, it still has the coalescent as its limiting ancestral
process. In the general case, the coalescent is obtained when time is rescaled by the factor
Ne = N/σ2, and we can see that this is the correct time scale for the Wright-Fisher model
(Ne = N), and for the Moran model (Ne = N2/2) despite the fact that the Moran model does
not satisfy the condition for Var[Yi].

The coalescent, with its effective population size Ne = N/σ2, can be obtained in these general
models by considering the possible realizations of the process of reproduction, then sampling
i individuals randomly without replacement, and computing Gi,j following Gladstein (1978).
Convergence to the coalescent results from the fact that

Gi,j =



1 −
(
i
2

)
σ2/N + o(1/N) if j = i,

(
i
2

)
σ2/N + o(1/N) if j = i− 1,

o(1/N) otherwise.

(3.21)

If necessary, for example to examine errors or rates of convergence as in figure 3.2, we could
make the stronger statement than the largest parts of the o(1/N) terms above are on the order
of 1/N2. Consider the probability that two lineages have a common parent in the previous
generation. This requires that both lineages are among the offspring of a single individual. For
a particular outcome of reproduction in the population, we can use the logic of Section 3.2.2 to
obtain

P{two have same parent|Y1 = y1, . . . , YN = yN} =
N∑
i=1

yi(yi − 1)
N(N − 1)

.

The average of this over the distribution of (Y1, Y2, . . . , YN ) gives

G2,1 = E

[
N∑
i=1

yi(yi − 1)
N(N − 1)

]
=

E[y1(y1 − 1)]
N − 1

=
Var[y1]
N − 1

=
σ2

N
+ o(1/N).

in which we have used the fact that E[yi(yi − 1)] is the same for every i, and that E[yi] = 1, so
that E[yi(yi − 1)] = Var[yi] (Kingman, 1982b).

Before moving on, we note that there have been many different definitions of effective pop-
ulation size, depending on what measure of genetic drift is used, and that these do not always
agree (Ewens, 1982). The above, Ne = N/σ2, might be termed the coalescent effective size.
Sjödin et al. (2005) have recently argued for the use of this term in a slightly broader setting,
which we will turn to in Chapter 7 when we consider the robustness of the coalescent.
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From the biological standpoint, the important feature of exchangeability is that the reproduc-
tive capacities of every individual in every generation is the same. There can be no transmission
of reproductive potential from parents to offspring, as would be the case if heritable variation
in survivorship or fecundity existed in the population, nor can there be any correlations in re-
productive potential due to other factors, such as geographic location. To be exchangeable, it
must be possible to randomly reassign these labels (fitnesses of alleles, geographic locations, etc.)
without effect. So far, we have seen this property as a consequence of the biological assumptions
of panmixia and neutrality in the Wright-Fisher model and the Moran model. However, it is
possible to construct models with non-trivial biological structure, but within which the offspring
numbers are still exchangeable, and this illustrates the meaning of exchangeability.

Let us assume that the habitat is structured in such a way as to determine the distribution
of offspring numbers. Note that we have already made one assumption of this sort: that the
population size is constant over time, implicitly fixed by external factors. We can call this new
model the “nest-site” model. At the start of every generation, each individual has an equal
chance of securing any given nest site, but nest sites differ in quality. There are many different
ways to proceed at this point, and for the sake of illustration we choose one. Assume that there
are K different kinds of nest sites. Nests of type i comprise a fraction βi of the total number of
nest sites. The quality of nest sites is fixed so that the individuals who occupy sites of type i
account for a fraction αi of offspring. Let us further assume that the Nαi offspring are produced
by their Nβi parents via Wright-Fisher sampling.

Consider the ancestry of a sample of size two under this model. The probability that the
two individuals come from the same parent in the immediately previous generation is given by

P{coal} =
K∑
i=1

αi

(
Nαi − 1

N

) (
1

Nβi

)
.

This is the probability that both samples, taken without replacement, came from the part of
the population that was produced by individuals in type i nest sites times the chance that they
had the same parent given this. As N increases, this probability of coalescence becomes

P{coal} ≈ 1
N

K∑
i=1

α2
i

βi
. (3.22)

Now consider the number Y1 of offspring of a single newborn individual when the population
size is large. With probability βi the individual will have a Poisson number of offspring with
mean and variance equal to αi/βi. Then the expected number of its offspring is equal to one,
which is true of course of any constant-size population model. By conditioning on the type of
nest site the individual ends up occupying, we have

σ2 =
K∑
i=1

βi

[
αi
βi

+
(
αi
βi

)2
]

− 1

=
K∑
i=1

α2
i

βi
. (3.23)

The term in brackets above is equal to the expected value Y 2
1 , given that it occupies a nest site

of type i. Comparing equation 3.23 to equation 3.22 we see that Ne = N/σ2 under this nest-site
model, and since this is a Cannings model, Kingman’s coalescent is the ancestral process in
the limit as N goes to infinity and time is measured in units of Ne generations, provided that
0 < σ2 < ∞.
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When αi = βi = 1/K, equation 3.23 gives σ2 = 1 and Ne = N as in the Wright-Fisher model.
In all other cases, σ2 > 1, and Ne < N in the nest-site model. For example, if there are just two
types of nests in the frequencies β1 = 1/4 and β2 = 3/4, and type-1 nests are the only ones that
permit reproduction (α1 = 1), then σ2 = 4 and Ne = N/4. Equation 3.23 says that whenever
some indivuals produce a disproportion number of offspring, the coalescent effective size will
be smaller than the actual size of the population. Despite the obvious biological structure of
the population, convergence to the coalescent means that only effect of the structure is on Ne:
the shape of the ancestral process for a sample, and thus sampled data,is exactly the same as
if there were no structure at all. Again, the key feature of the nest-site model, which makes it
an exchangeable-type model, is that nest sites are not inherited, but assigned randomly every
generation. Cases in which structure alters the ancestral process more dramatically will be seen
in Chapters 5 and 7.

3.3 Some Properties of Coalescent Genealogies

Twenty years after the birth of coalescent theory, the field abounds with results concerning
the sizes and shapes of genealogies. Some of the properties that have been studied are of
natural interest considering the mathematical structure of the coalescent. Most have been of
interest because they are related to the measurement of biological diversity. Given the important
association between coalescent theory and the collection and analysis of genetic data, there is a
good deal of overlap between the two. For example, the time TMRCA back to the most recent
common ancestor of the sample is equal to the stopping-time of the coalescent, but it can also
be a quantity of great interest to biologists studying the history of populations. Section 3.3.1
below considers TMRCA and another measure, Ttotal, or the total length the genealogy, which
is of inherent interest to biologists since it is equal to the time over which mutations might
have occurred in the history of the sample. Section 3.3.2 then considers the branching structure
of genealogies. These structures and their associated probabilities are also of interest both
mathematically and biologically. In addition, an understanding of them is essential before
predictions about measures of sequence polymorphism that depend on tree structure — such as
the distribution of the site frequencies introduced in Chapter 1 — can be made in Chapter 4.

3.3.1 Two Measures of the Size of a Genealogy

The mathematical simplicity of the coalescent derives from the fact that the coalescence times
Ti are (i) independent of one another and (ii) independent of the branching structure of the
genealogy. Both of these properties follow directly from Poisson process of coalescence with rate
equal to one for every pair of lineages. As a result, it is straightforward for make predictions
about many quantities, including two of enduring interest to population geneticists: the time
to the most recent common ancestor of the entire sample, TMRCA, and the total length of all
the branches in the genealogy, Ttotal. Because Ti is the time in the history of the sample during
which there were exactly i ancestral lineages,

TMRCA =
n∑
i=2

Ti (3.24)

and

Ttotal =
n∑
i=2

iTi (3.25)

Equation 3.24 is just the sum of all n − 1 coalescence times, and equation 3.25 is the sum of
the lengths of all the branches in the genealogy, broken up into the coalescence time intervals,
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Ti. Remembering section 1.1 above, we might naively have defined some τi to be the length of
the i-th branch in the genealogy, where 1 ≤ i ≤ 2n − 2, and then Ttotal would be the sum of
these:

∑2n−2
i=1 τi. If we then wanted to calculate the expectation and variance of Ttotal, or its

probability function, we would have faced serious problems because the τi and their distributions
would be different for different genealogies. Thankfully, this is unnecessary. We know that all
genealogies have i lineages during time Ti regardless of their structure, and this makes it easy
to “integrate” over all possible genealogies to obtain the properties of Ttotal (and TMRCA).

Because TMRCA and Ttotal are simple functions of independent exponential random variables,
we can use equations 2.16 and 2.27, together with equation 2.51, to compute the expectations
of TMRCA and Ttotal. Thus,

E[Ttotal] =
n∑
i=2

iE[Ti] =
n∑
i=2

i
2

i(i− 1)
= 2

n−1∑
i=1

1
i

(3.26)

and

E[TMRCA] =
n∑
i=2

2
i(i− 1)

= 2
n∑
i=2

(
1

i− 1
− 1

i

)

= 2
(

1 − 1
2

+
1
2
− 1

3
+

1
3
− . . .− 1

n− 1
+

1
n− 1

− 1
n

)

= 2
(

1 − 1
n

)
(3.27)

The variances of TMRCA and Ttotal are also computed easily using equations 2.19 and 2.29,
together with equation 2.51. These turn out to be

Var[Ttotal] = 4
n−1∑
i=1

1
i2

(3.28)

and

Var[TMRCA] = 8
n∑
i=2

1
i2

− 4
(

1 − 1
n

)2

(3.29)

Equations 3.26 and 3.28 are due to Watterson (1975), while Hudson (1990) and Donnelly and
Tavaré (1995) derive and review equations 3.27 and 3.29.

Tajima (1993) and Tavaré et al. (1997) point out that E[TMRCA], Var[TMRCA], and Var[Ttotal]
converge to constant values 2, 4π2/3− 12 ≈ 1.16, and 2π2/3 ≈ 6.58, respectively, as the sample
size n goes to infinity. In contrast, E[Ttotal] ≈ 2(log(n) + γ) and so increases without bound
as n grows — the constant Euler’s γ ≈ 0.577216 is defined to be limn→∞

∑n
i=1 1/i − log(n).

Figure 3.3 shows how E[TMRCA] and E[Ttotal] depend on n. Although E[Ttotal] does increase
without bound, it does so more slowly for larger n. As equation 3.26 shows, sampling an (n+1)st
sequence adds only 2/n to what may already be a sizable number. This has consequences for the
measurement of DNA sequence polymorphism, which we will explore in Chapter 4. Similarly,
from figure 3.3 or equation 3.27, we can see that E[TMRCA] is close to its asymptotic value of
2 even for moderate n. Figure 3.1, in which the lengths of the coalescence times are drawn in
proportion to their expected values, shows the consequences this has on the shapes of genealogies
under the standard coalescent model. For all but the smallest samples, there will likely be a
large number of coalescent events in the very recent history of the sample. Seen from another
perspective, the most ancient coalescence times comprise a large fraction of any genealogy.
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Figure 3.3: The relationship between sample size and the expected values of
TMRCA and Ttotal.

Although the moments of TMRCA and Ttotal are quite easy to obtain, the fact that the
coalescence times Ti are mutually independent makes the derivations of the full probability
distributions of TMRCA and Ttotal almost as straightforward. The distribution of TMRCA is simply
the sum of n− 1 independent exponential random variables, Ti, with parameters i(i− 1)/2 for
2 ≤ i ≤ n. We can use equation 2.66 to immediately obtain

fTMRCA
(t) =

n∑
i=2

(
i

2

)
e−( i

2 )t
n∏

j=2
j �=i

(
j
2

)(
j
2

)
−

(
i
2

) . (3.30)

Equation 3.30 is due to Takahata and Nei (1985) who used a Laplace transform of TMRCA =∑n
i=1 Ti rather than directly performing n−2 convolutions. However, the distribution of TMRCA

had been obtained previously by Tavaré (1984) working directly from Kingman’s ancestral
Markov chain and using matrix methods. The resulting equation,

fTMRCA(t) =
n∑
i=2

(2i− 1)(−1)in[i]

n(i)

(
i

2

)
e−( i

2 )t, (3.31)

in which

n[i] = n(n− 1) . . . (n− i+ 1) (3.32)

n(i) = n(n+ 1) . . . (n+ i− 1), (3.33)

may look quite different, but is identical to equation 3.30 above.
The distribution of the total length of the genealogy, Ttotal, can also be obtained. Note that,

if we define T ∗
i = iTi, then from equation 2.52, T ∗

i also follows an exponential distribution,

fT∗
i
(t) =

i− 1
2

e−
i−1
2 t. (3.34)

Thus, similarly to TMRCA, the total tree length Ttotal =
∑n

i=2 T
∗
i is the sum of n−1 independent

but not identically distributed exponential random variables, and its distribution can also be
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obtained directly from equation 2.66. Using this method, it is given by

fTtotal(t) =
n∑
i=2

i− 1
2

e−
i−1
2 t

n∏
j=2
j �=i

j − 1
j − i

. (3.35)

As with equation 3.31 above, the alternative form

fTtotal(t) =
n∑
i=2

(−1)i
(
n− 1
i− 1

)
i− 1

2
e−

i−1
2 t (3.36)

is available using Tavaré’s (1984) matrix method. Equation 3.36 can be simplified further using
the binomial theorem, equation 2.36, to give

fTtotal(t) =
n− 1

2
e−

t
2

(
1 − e−

t
2

)n−2

(3.37)

and this may sometimes be preferred over equations 3.35 and 3.36.
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Figure 3.4: The distributions of TMRCA and Ttotal for n = 2, 5, 10, 20, 50, 100
(from left to right). The curves for n = 20 and n = 50 are omitted for fTMRCA(t)
because they are very close to the curve for n = 100.

Figure 3.4 plots of probability functions of TMRCA and Ttotal, given by equation 3.30 (or 3.31)
and equation 3.35 (or 3.36 or 3.37) for a series of sample sizes. When n is equal to two, fTMRCA(t)
has mean equal to one and a mode at zero. As n increases, the curves for fTMRCA(t) converge
on a distribution with mean equal to two (see equation 3.27). This mean of two corresponds to
a period of 4N generations under the Wright-Fisher model. The distribution fTMRCA(t) has a
mode at about 1.093 when n = 10 and 1.274 when n = 100. The asymmetry of fTMRCA(t) (e.g.
that the mode is less than the mean) reflects the strong influence of the most ancient coalescence
time, T2, which makes up a significant fraction of TMRCA even when n is large. In contrast to
the distribution of TMRCA, as n increases the curves for fTtotal(t) continue to move to the right,
indicating larger and larger genealogies, even when the sample size is large. This is due to the
fact, illustrated by equation 3.26, that the next sample taken adds a non-negligible increment
to Ttotal even when n is already large. Although Ttotal is less strongly influenced than TMRCA is
by the earliest coalescence times, in particular T2, fTtotal(t) remains asymmetric as n grows. It
does not, for instance, approach a Normal distribution in the limit of large n.

It is possible to obtain the limiting form of fTtotal(t) as n increases. So that the limiting
distribution will be centered around zero, define T ∗

total = Ttotal − 2(log(n) − γ), where again
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Figure 3.5: The limiting distribution T ∗
total = Ttotal − 2(log(n) + γ) as n → ∞.

γ = limn→∞
∑n

i=1 1/i − log(n) ≈ 0.577216. In other words T ∗
total is to the deviation of Ttotal

from its expected value for large n. With this change of variable, and using equation 2.47, as n
approaches infinity equation 3.37 gives

fT∗
total

(t) =
1
2
e−t/2−γ−e−t/2−γ

. (3.38)

This is depicted in figure 3.5, and illustrates that the series of distributions of the total length
of the genealogy shown in figure 3.4 assumes a stable shape in the limit of large sample size.
The distribution 3.38 is an example of an extreme value distribution, which are reviewed in
Chapter 22 of Johnson, Kotz, and Balakrishnan (1995). In particular, equation 3.38 is identical
to the distribution 22.25 in Johnson, Kotz, and Balakrishnan (1995) with their ξ = −2γ and
their θ = 2. An extreme value distribution makes sense because we can think of the distribution
in equation 3.34 as the waiting time to the first event among i − 1 independent exponential
processes, each with rate equal to 1/2, so that fTtotal(t) is identical to the distribution of the
maximum of n − 1 exponential waiting times. Finally, we have E[T ∗

total] = 0, and since T ∗
total

differs from Ttotal by a constant, Var[T ∗
total] = Var[Ttotal] = 2π2/3.

3.3.2 The Branching Structure of Genealogies

Considering the backward process of the coalescent, it is easy to see that genealogies are random-
joining binary trees. We will use this notion in the next chapter to derive some predictions about
DNA sequence polymorphism. Note that sometimes it is easier to consider the forward process
of random bifurcation of lineages rather than the backward process of random joining. The
study of tree structures has a long history in probability theory and evolutionary biology, dating
back at least to the work of Cayley (1889) and Yule (1924). One property of these trees has
already been mentioned: every one of them is equally likely. Figure 3.6 shows all the possible
genealogical structures for a sample of size n = 4. We count eighteen in all: there are two
different trees (a) and (b) with twelve and six possible labellings of the tips, respectively. This
results from the fact that there are six possible pairs that can be the first to coalesce, and for
each of these there are three possible pairs to coalesce among the three remaining lineages. Thus,
coalescent genealogies are rooted (by the MRCA) bifurcating trees with labelled tips and nodes
ordered in time.
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The trees in figure 3.6 are distinguished by the number of tips on either side of the root:
three and one in (a), and two and two in (b). Genealogies of the type (a) are twice as likely as
genealogies of type (b) because, after the first coalescent event occurs, trees of type (b) require
that the next coalescent event is between the two lineages that have not yet coalesced. In
contrast, the other two possible coalescent events, between one of the “uncoalesced” lineages and
the lineage ancestral to the first coalescent event, produces a genealogy of type (a). However, if
we distinguish between the two branches which descend from the root of the tree, we can further
separate the trees of type (a) that have one descedent to the left of the root from those that
have three descedents to the left of the root. We can count these two kinds of trees by rotating
the branches of the twelve possible labelled genealogies of type (a) so that the labels are always
in the order ABCD. This shows that there are size of each type. Together with the six possible
genealogies of type (b), this implies that the probability p(i;n) that there are i tips to the left
of the root is uniform on i ∈ {1, 2, . . . , n− 1}, that is p(i;n) = 1/(n− 1).

We can use the idea of random bifurcation of lineages to show that this is true. Consider
the n+1 bifurcation event. The pattern (i;n+1) could result either from the pattern (i;n) and
a bifurcation of one of the n− i lineages to the right of the root, or from the pattern (i− 1;n)
and a bifurcation of one of the i− 1 lineages to the left of the root. This gives the following the
recursion over a single bifurcation event

p(i;n+ 1) =
n− i

n
p(i;n) +

i− 1
n

p(i− 1;n). (3.39)

It is easily verified, or proved by induction, that p(i;n+1) = 1/n, so that number of descendents
on one side of the root of a coalescent tree is uniform on 1, 2, . . . , n − 1. This result has
implications for the distribution of polymorphism in a sample, and we will put it to use in
Chapter 4.

A   B   C   D
A   B   D   C
A   C   B   D
A   C   D   B
A   D   B   C
A   D   C   B
B   C   A   D
B   C   D   A
B   D   A   C
B   D   C   A
C   D   A   B
C   D   B   A

1     2    3    4

1     2    3    4

(a)

(b)

A   B   C   D
A   C   B   D
A   D   B   C
B   C   A   D
B   D   A   C
C   D   A   B

Labellings

1 2 3 4 1 2 3 4

Tree (a) Tree (b)

Figure 3.6: The eighteen possible genealogies of a sample of size four.

It is important to keep in mind that the coalescence times do not depend at all on the
branching structure of the genealogy under the standard coalescent model. For example, no
reference was made to tree structures in the derivation of fTMRCA(t) and fTtotal(t) in Section 3.3.1
above. In Chapter 5, we will see that the branching patterns of genealogies can reflect patterns of
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population subdivision and migration or track the historical association of subpopulations, and
so might contain information about important biological features of the population. Here and in
most of Chapter 4, however, predictions are made by “integrating” over all possible genealogies,
including both the banching structure and the coalescence times. We will see that this can
often be done by considering the simple process of random joining, or random bifurcation,
without making explicit reference to particular trees. It is fortunate that this is so, because the
number of possibles trees is enormous. In Chapter 8 we will encounter simulation based methods
of inference that do explicitly consider genealogical trees, even under the standard coalescent
model. We take a moment here to reflect on what a formidable task this is.

Random-joining trees Unrooted bifurcating trees
n (nodes ordered in time) (nodes not ordered in time)

2 1 1

3 3 1

4 18 3

5 180 15

6 2700 105

7 56700 945

8 1587600 10395

9 57153600 135135

10 2571912000 2027025

100 1.37 × 10284 1.70 × 10182

1000 3.02 × 104831 1.91 × 102860

Table 3.2: The numbers of possible trees.

The number of possible tree structures can be obtained by considering the number of possible
coalescent events at each step towards the MRCA. Beginning with the present-day sample of
n items, whenever there are i lineages present there are i(i − 1)/2 possible pairs of lineages to
coalesce. Therefore, the total number of these random-joining trees is given by

n∏
i=2

(
i

2

)
=

n!(n− 1)!
2n−1

. (3.40)

These are given in the left-hand column of Table 3.2. The table also shows the number of
unrooted bifurcating trees with labelled tips, which is the number of phylogenetic trees typically
considered in the systematic literature; see Penny et al. (1982). The latter is given by (2n−5)!!,
or the product of the odd numbers from 1 to (2n − 5) (Felsenstein, 1978). The techniques for
navigating this space of trees will be described in Chapter 8.

3.4 Human-Neanderthal Couples?

Following the publication of a mitochondrial DNA sequence recovered from a Neanderthal skele-
ton (Krings et al., 1997), Nordborg (1998) presented a simple and elegant application of the
theory covered in this chapter to an important question about the genetic ancestry of humans,
namely whether or not there is evidence of a Neanderthal contribution to the current human
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gene pool. Neanderthals, an extinct group of archaic hominids, are known to have coexisted with
humans in Europe and western Asia until as recently as 30,000 years ago. There is long-standing
debate about the relationship between Neanderthals and humans, and about the possibility that
human genes may show Neanderthal ancestry (Stringer and Gamble, 1993). A genetic locus that
had Neanderthal ancestry could, for example, show a pattern in which copies from some hu-
mans living today have a more recent common ancestor with a sequence from a Neanderthal
than they do with copies of the same locus from other humans. This was not observed when
Krings et al. (1997) compared a sequence from the control region of mitochondrial DNA from
the Neanderthal type specimen to sequences from 986 modern humans. Instead, the pattern
shown in figure 3.7 was observed in which all modern human sequences share a common ancestor
to the exclusion of the Neanderthal sequence, with a long branch connecting the Neanderthal
to humans (Krings et al., 1997).

Figure 3.7: Schematic genealogy for human and Neanderthal samples, repro-
duced from Nordborg (1998).

Nordborg (1998) used coalescent theory to investigate whether random mating between Ne-
anderthals and humans could be rejected based upon the observations of Krings et al. (1997).
The 986 human mtDNA sequences share a common ancestor at an unknown time Te in the
past. This may greater than or it may be smaller than the date ts of the Neanderthal mtDNA
sequence, which is assumed to be between 30,000 and 100,000 years before present. On the
coalescent time scale, this corresponds to ts between 0.44 to 1.47, assuming a generation time
of 20 years and an effective population size of 3,400 females, since human mitochondria are
maternally inherited. The time Tr of the most recent common ancestor of the entire sample
(humans plus Neanderthal) is also unknown. From the numbers of polymorphisms among hu-
mans and between humans and Neanderthal, Krings et al. (1997) claimed that Tr was at least
four times Te, and we follow Nordborg (1998) in taking this as given. The null model of random
mating between archaic humans and Neanderthals can be tested by computing the chance of
observing data as extreme or more extreme than those of Krings et al. (1997). We compute
P{tree and Tr ≥ 4Te} under the null model with ts ranging between 0.44 and 1.47 (30,000 and
100,000). Of course, the genealogical tree is already the most extreme that could have been
observed in terms of distinguishing between humans and Neanderthals, but it turns out that
this alone does not rule out random mating between Neanderthals and archaic humans.

It is straightforward to compute the desired probability, Nordborg (1998) noted, by condi-
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tioning on the number of human mtDNA lineages that existed at time ts when the Neanderthal
sequence joins these remaining lineages in the coalescent process. Following Tavaré (1984),
Nordborg (1998) used An(t) to denote the number of ancestral lineages that exist at time t in
the past of a present-day sample of size n. The integers 1 through n are the possible values of
the random variable An(t). Computing the P-value is simplified by the fact that for given a
value of An(t) the probability of the tree and the the probability that Tr ≥ 4Te are independent
of one another. Thus, we have

P{tree and Tr ≥ 4Te} =
986∑
k=1

P{tree|k}P{Tr ≥ 4Te|k}P{An(ts) = k}, (3.41)

and we proceed by calculating all of the terms on the right side of this equation.
First, let gn,k(t) = P{An(t) = k}, and note that this is equal to the probability that exactly

n−k coalescent events occur before time t in the past. Slightly different derivations are required
depending on whether k = 1 or k ≥ 2. We can obtain gn,1(t) directly from the distribution of
the time to the MRCA of the sample:

gn,1(t) =
∫ t

0

fTMRCA
(x)dx

=
∫ t

0
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The last step above uses the fact that

n∑
i=2

n∏
j=2
j �=i

(
j
2

)(
j
2

)
−

(
i
2

) = 1,

which we know to be true because the distribution of TMRCA given in equation 3.30 must
integrate to one over all t (a more general relation, i.e. for any rates λi, may be obtained in the
same way from equation 2.66).

The derivation of gn,k(t) for k ≥ 2 is a bit more complicated because it is necessary to
consider that the (n − k)th coalescent event occurs before time t but that the (n − k + 1)th
coalescent event occurs after time t. Let Tn,k =

∑n
i=k Ti be the time to the (n− k)th coalescent

event. Using the same rule for the convolution of independent exponential random variables
that we used to derive fTMRCA

(t) = fTn,1(t), we can obtain

fTn,k
(t) =

n∑
i=k+1

(
i

2

)
e−( i

2 )t
n∏

j=k+1
j �=i

(
j
2

)(
j
2
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(
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2

) . (3.43)



66 CHAPTER 3. THE COALESCENT

Using considerably more algebra than equation 3.42 required, we find

gn,k(t) =
∫ t

0

fTn,k
(x)

∫ ∞

t−x

fTk
(y)dydx

=
1(
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) n∑
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2 )t
n∏
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)(
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2

)
−

(
i
2

) k ≥ 2. (3.44)

This derivation of equation 3.44 requires the use of

n∑
i=n′

n∏
j=n′
j �=i

1(
j
2

)
−

(
i
2

) = 0,

which can been seen to be true from equations 2.65 and 2.66 (for any rates λi). Thus, equa-
tions 3.42 and 3.44 comprise the probability function forAn(t). As before, Tavaré (1984) provides
a slightly different form,

gn,k(t) =


1 −

n∑
i=2

e−( i
2 )t(2i− 1)(−1)in[i]

n(i)
if k = 1

n∑
i=k

e−( i
2 )t(2i− 1)(−1)i−kk(i−1)n[i]

i!(i− k)!n(i)
if k ≥ 2

(3.45)

which is identical to equations 3.42 and 3.44.
For a given value of t, gn,k(t) is a probability function (i.e. sums to one) over k = 1, 2, . . . , n

since the sample must have an ancestor or ancestors. Figure 3.8 plots gn,k(t) for a sample of
size n = 20 over a range of possible values of t and for every possible value of k. The value
of gn,k(t) is given at discrete time points between zero and three, in thirty steps of size 0.1.
Figure 3.8 shows the dramatic dependence of gn,k(t) on t when t is small which reflects the very
high rate of recent coalescent events. For example, while g20,20(0.0) = 1, the figure shows that
g20,20(0.1) ≈ 0 and the mode of g20,k(0.1) occurs at about k = 10. That is we expect about
ten coalescent events in a sample of size n = 20 over only 0.1 units of time. When n = 986, as
with the human mtDNA sample, the rate of recent coalescence is extremely high since there are
n(n− 1)/2 = 986 × 985/2 = 485, 605 possible pairs of sequences to coalesce! This is evident in
the equation 3.9 for the distribution of the coalescence time, but the consequence is seen clearly
in figure 3.8. As we trace the history of a large sample back in time, the number of ancestors
An(t) collapses quickly to just a handful.

In order to calculate the P-value, equation 3.41, we next compute the probability of the tree
given that A986(ts) = k. Again, we are interested in the chance that the entire set of human
samples share a common ancestor to the exclusion of the Neanderthal sample. This is simply
the probability that one particular lineage, here the Neanderthal lineage, in a sample of size
k+1 does not coalesce with any others until the final (2 → 1) coalescent event. This is obtained
easily by considering the process of random joining of lineages, with one lineage labelled to
distinguished it from the others. When there are j lineages, there are j(j − 1)/2 possible pairs
to coalesce and j−1 of these would involve the labelled lineage since there are j−1 lineages that
could coalesce with the labelled lineage. The desired probability is simply the product, from
j = k + 1 down to k = 3, of the fraction of coalescent events that do not involve the labelled
lineage. Once there are just k = 2 lineages, one of which is the labelled lineage, the tree of
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Figure 3.8: Bar chart of the probability g20,k(t) as a function of t and k.

interest is guaranteed. Therefore, we have

P{tree|k} =
k+1∏
j=3

(
1 − j − 1(

j
2

) )
=

k+1∏
j=3

(
j − 2
j

)

=
(k − 1)(k − 2)(k − 3) · · · 3 · 2 · 1
(k + 1)k(k − 1)(k − 2) · · · 5 · 4 · 3

=
2

k(k + 1)
. (3.46)

Nordborg (1998) notes that this is a special case of a more general result; see Watterson (1982)
and Saunders et al. (1984), as well as Chapter 4, Section 4.1.3.

The last quantity require to compute the P-value, equation 3.41, for the human and Ne-
anderthal data is P{Tr ≥ 4Te|k}. From the definitions of these times and of ts, depicted in
figure 3.7, we have

P{Tr ≥ 4Te|k} = P{Tr − 4Te ≥ 0|k}

= P{(Tr − ts) − 4(Te − ts) ≥ 3ts|k}

= P{Tk+1,1 − 4Tk+1,2 ≥ 3ts}

= P{T2 − 3Tk+1,2 ≥ 3ts}

= P{T2/3 − Tk+1,2 ≥ ts}

The distribution of Tk+1,2 is given by equation 3.43 and, from equation 3.9 and changing variables
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as in equation 2.52, the distribution of T2/3 is exponential with parameter λ = 3. Further Tk+1,2

and T2/3 are independent of one another because they involve non-overlapping coalescence time
intervals. In all, we have

P{Tr ≥ 4Te|k} =
∫ ∞

0

fTk+1,2(x)fT2/3(ts + x)dx

and this can be used together with P{An(ts) = k} = gn,k(ts) and P{tree|k} = 2/(k(k + 1))
in equation 3.41 to compute the probability of observing data as extreme or more extreme
than what Krings et al. (1997) observed, under the null hypothesis of random mating between
Neanderthals and archaic humans.

ts (in years)

30,000 100,000

E[A986(ts)] 4.86 1.75

P{tree} 0.085 0.56

P{tree and Tr ≥ 4Te} 0.0063 0.035

Table 3.3: Results for human-Neanderthal test, redrawn from Nordborg’s (1998) table 1.

Table 3.3 shows the results of Nordborg’s (1998) analysis. We can see that the number of
human ancestral lineages expected to exist is low even for ts = 30, 000 years, or 0.44 coalescence
time units. At first sight this may be surprising, but not in light of the results plotted in figure 3.8
which suggest very rapid change in E[A986(t)] for small t. Just a few lineages are expected to
remain at the time the Neanderthal sequence existed. This causes the banching pattern of the
tree, which may have seemed significant to the eye, to in fact be fairly likely when its probability
is averaged over the distribution of A986(t). Finally, the hypothesis of random mating between
Neanderthals and humans can be rejected at the 5% significance level over the entire plausible
range of ts. Note that, as a matter of convenience, Nordborg (1998) computed the values in
table 3.3 using simulations. Then, noting that panmixia represents an unnecessarily extreme
case of Neanderthal-human exchange, Nordborg (1998) used these simulations to test some less
extreme scenarios in which Neanderthals could still have contributed to the human gene pool.
Some of these could not be rejected, and interested readers should consult Nordborg (1998).



3.5. EXERCISES 69

3.5 Exercises

1. Consider a nest-site model in which there are a finite number K of nest sites, so that the N
individuals in the next generation are the descendents of just the K individuals who secure
nests. What is the variance of offspring number, Var[Yi], in this model?

2. Would the coalescent be the appropriate description of the limiting (N → ∞) ancestral
process for the population in excercise 1? Why or why not?

3. What is the expected value of the sum of the lengths of all branches on the left side of the
root in a genealogy? Assume that the sample size n is even.

4. If n = 3 in excercise 3, what is the variance of the same quantity?

5. A sample of n = 10 has been taken from a population for which the coalescent holds. What
is the expected length of the time during which there are an even number of lineages in the
history of the sample?

6. What is the distribution of the length of time during which there are an odd number of
lineages in the history of the sample?

7. What is the probability of a fully pectinate, or comb-shaped, genealogy of a sample of n
sequences? Consider the sequences to be unlabelled.

8. Define a pairwise distance in a genealogy to be the sum of branch lengths as we trace from
one tip of the tree to another. How many distinct pairwise distances will there be in a
genealogy of a samples of size n?

9. Blah.

10. Blah.


