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Gene genealogies and the coalescent
process

RICHARD R. HUDSON

1. INTRODUCTION

When a collection of homologous DNA sequences are compared, the
pattern of similarities between the different sequences typically contains
information about the evolutionary history of those sequences. Under a
wide variety of circumstances, sequence data provide information about
which sequences are most closely related to each other, and about how
far back in time the most recent common ancestors of different sequences
occurred. If the sequences were obtained from distinct species, then the
information is frequently extracted and displayed in the form of an inferred
phylogenetic tree, which may represent the evolutionary relationships of
the species from which the sequences were sampled. If, instead of being
from different species, the sequences are from different individuals of the
same population, the information is genealogical, and in this case gene
trees can sometimes be inferred. A gene tree shows which sampled
sequences are most closely related to each other and perhaps the times
when the most recent common ancestors of different sequences occurred.
A hypothetical gene tree, or genealogy, of five sampled sequences is
shown in Fig. 1. In the absence of recombination, each sequence has a
single ancestor in the previous generation. (It is important to distinguish
a gene tree of sampled sequences from the pedigree of a sample of diploid
individuals, in which the number of ancestors grows as one proceeds back
in time, because each diploid individual has two parents.) The possibility
of obtaining detailed information about the genealogy of sampled genes
dramatically changes the situation for molecular population geneticists.
Before the DNA era, molecular polymorphism data were primarily in
the form of frequencies of electromorphs, alleles distinguished by their
mobility on electrophoretic gels. With protein electrophoresis, two homo-
logous copies of a gene could be classified as being the same or different.
If they were different, one could not measure how different; if the two
copies were the same, one could not with confidence distinguish whether
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Fig. 1. An example of a genealogy of a sample of five alleles, showing the time
intervals between coalescent events. In this figure, the intervals, T(i), are shown
with lengths proportional to their expected values as given by eqn (5).

they were really the same or simply convergent in certain physical proper-
ties leading to similar electrophoretic mobility. Thus detailed information
about the genealogies of genes could not be extracted from data on
electromorph frequencies. With modern DNA techniques, sequences of
homologous regions of many individuals are obtainable and detailed infor-
mation about the genealogy of sampled genes will be obtained. Examples
of genealogies inferred from sampled alleles are given in Stephens and
Nei (1985), Aquadro er al. (1986), Bermingham and Avise (1986), Avise
et al. (1987) and Cann et al. (1987).

The obvious challenge for molecular population geneticists is: How can
we utilize this information to increase our understanding of the forces
acting on molecular variation in natural populations? From the theory
side, we can begin by examining the properties of genealogies that arise
under a variety of population genetic models. It is important to ask:
Are genealogies expected to be very different under different competing
models? Can we devise statistical tests that take advantage of the different
genealogies expected? To proceed with this task, one needs to examine
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the statistical properties of genealogies of sampled genes under different
models.

In the following, 1 will describe a variety of circumstances in which
properties of genealogies can be derived analytically or by computer
simulation. This will not constitute a comprehensive review of gene gen-
ealogy theory, but rather a very personal view that concentrates on the
infinite-site model. Some properties of genealogies will be described under
selectively neutral models, with and without recombination, and with and
without geographic structure. The effects of some forms of selection will
also be described. 1 will indicate some applications of this genealogical
approach for carrying out statistical tests or estimating parameters or
simply allowing an ‘eye-ball’ test of the fit of observations to data. I will
also indicate how simulations based on the coalescent process can be
constructed and used to investigate a variety of models.

This will not be a rigorous mathematical treatment. Those interested
in a more precise analysis should consult the seminal work of Kingman
(1980, 19824,b) and the review by Tavaré (1984). Much of the very elegant
and useful work of Griffiths (1980), Watterson (1984) and Padmadisastra
(1987, 1988) on coalescents and lines of descent that focus on the infinite
allele model will not be covered. This includes a large body of work on
the ages of alleles (Donnelly 1986; Donelly and Tavaré 1986; Tavaré er
al. (1989) that is reviewed by Ewens (1989). The infinite-allele models
and the infinite-site models are very closely related, as will be described
later, and results from one can often be used immediately to answer
questions about the other. However, the questions asked and the par-
ameter values considered are often quite distinct for the two models. In
this chapter, I will concentrate on results that directly concern infinite-
site models, which I feel are most useful in the interpretation of nucleotide
variation in populations.

I will focus on properties of relatively small samples of alleles. The
work on properties of genealogies of entire populations, including fixation
times, will not be considered (Donnelly and Tavaré 1987; Watterson
1982a, 1982b). Also, the important work on the relationship between
gene trees and species trees will not be discussed (Hudson 1983b; Neigel
and Avise 1986; Pamilo and Nei 1988; Takahata 1989).

Statistical properties of genealogies depend very strongly on the kind
of sampling that occurs to produce one generation from the last. In this
chapter, only the Wright-Fisher (W-F) model will be considered. The
sampling that produces one generation from the last under this model is
described briefly in the next section. A range of alternative neutral models
have been found that have essentially the same genealogical properties as
the W-F model, with only a change of time-scale (Kingman 19824.b;
Watterson 1975; see also the reviews by Tavaré, 1984, and Ewens, 1989).
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2. SEPARATING THE GENEALOGICAL PROCESS FROM
THE NEUTRAL MUTATION PROCESS

As will be discussed in great detail in the following pages, the statistical
properties of genealogies depend on such factors as population size,
geographic structure and the presence of selectively maintained alleles.
That properties of genealogies should depend on these demographic
properties is obvious, because actual genealogies depend on who had
offspring and who did not, who migrated and to where, and whose
offspring bore selectively important mutations. It should also be clear that
strictly neutral mutations ~ mutations that have not and will not affect
fitness — should have no affect on the genealogies of random samples.
This is because, by definition, neutral mutations do not affect the number
of offspring or tendency to migrate of individuals bearing those mutations.
That being the case, we can study the properties of genealogies without
regard to a specific mutation model for neutral variants. So, for example,
the statistical properties of genealogies do not depend on whether neutral
mutations are more frequently transitions than tranversions or whether
an infinite-site, finite-site or infinite-allele model is most appropriate. Of
course, the statistical properties of our inferences about the genealogical
process are likely to depend strongly on the mutation process. For exam-
ple, if the neutral mutation rate is very low, all the sequences in a sample
may be identical and we could get no information about the genealogy of
the sample.

With the neutral mutation process that we will consider, each offspring
differs from its parent at the locus under consideration by a Poisson
distributed number of mutations. The mean number of mutations, p, will
be assumed constant, independent of genotype, population size and time.
The mutations are assumed to occur independently in different individuals
and different generations. This mutation model will be referred to as
the constant-rate neutral mutation process. This is the standard neutral
mutation model (Kimura 1983; Watterson 1975). Under these assump-
tions, mutations accumulate along lineages in an inexorable fashion inde-
pendent of, for example, population size or selection events at linked loci.
Given 1, the number of generations since the most recent common ancestor
of two sampled homologous sequences, §, the number of mutations that
have occurred in the descent to the two descendent sequences, is Poisson
distributed with mean 2us. When ¢ is a random quantity, the mean and
the variance ~ in fact all the moments of S — are determined by the
moments of 7 assuming the constant-rate neutral mutation process.

To emphasize this point, consider a population that at time 0 is com-
pletely homozygous at a locus at which only neutral mutations occur.
After  generations of evolution, one examines the sequence at the locus
in a single randomly selected individual. Under the mutation scheme we
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have described in the previous paragraph, the number of mutations that
will have occurred to distinguish our randomly sampled individual from
the individuals in the population at time 0, is just the number of mutations
that have occurred alcng a particular lineage of length ¢. This number of
mutations is Poisson distributed with mean wr. It does not matter what
the population size has been, whether selection has been occurring at
linked loci, or whether there is population subdivision. This is the basis
for the results of Birky and Walsh (1988) concerning the rate of accumu-
lation of neutral mutations when selection is occurring at linked loci. In
the example above, the number of mutations that have fixed in the entire
population between time 0 and time ¢ will depend on these demographic
aspects of the population. Similarly, the amount of polymorphism in the
population at time ¢ will depend on population size and other demographic
factors, but the number of mutations that will have occurred along individ-
ual lineages in the past  generations, that distinguish a sampled sequence
from their ancestors r generations back, is Poisson distributed with mean
wt, regardless of these other factors.

This property of the constant-rate neutral mutation process will be
exploited in the following way. Let T,,, denote the sum of the lengths of
the branches of the genealogy of a sample. As discussed in the previous
paragraph, S, the number of mutations on the genealogy, given T, is
Poisson distributed with mean pnT,,,. Once the distribution of Tior 1S
determined under a particular model, the distribution of S can easily be
obtained. For example, if the first two moments of T are determined,
then the first two moments of § can be calculated using properties of
compound distributions as:

E(S) = nE(T,,) (1)
and
Var(S) = wE(To) + p? Var(T,,,) (2)

Reiterating, under the models that we will consider, the properties of
genealogies do not depend on the neutral mutation process, and therefore
can be studied without precise specification of the neutral mutation pro-
cess. For example, we can study the statistical properties of T,,, without
specifying the rate or pattern of neutral mutation. Furthermore, statistical
properties of neutral variation in samples are completely determined by
the statistical properties of the genealogies and the neutral mutation
process. In other words, if two different models make the same assump-
tions about the neutral mutation process and if the two different models
lead to the same distribution of genealogies, then the pattern of neutral
variation will be the same for the two models. For example, if the neutral
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mutation process is as we have described above, the mean value of S is
completely determined by the mean value of T,,,. Two different models
that lead to the same mean value of T,,, will have the same mean value
of §.

Throughout this chapter, we will consider an ideal W-F model, with
either N haploids or N diploids. Briefly, this is a discrete generation model
in which, for the haploid version, the N haploids of an offspring generation
are obtained by sampling (and replicating possibly with mutation) N times
with replacement from the parent generation. In the selectively neutral
version, all parents are equally likely as parents of each of the N haploid
offspring. A detailed description of this model is contained in Ewens
(1979). We will assume that N is large and constant, in which case
individuals have approximately Poisson distributed numbers of offspring.
Most of the results concerning this model will be approximate, ignoring
terms of order (1/N?) relative to (1/N). This corresponds to the usual
assumptions made for using diffusion approximations and will be referred
to as the diffusion approximation. In contrast to the W-F model, exact
results can often be obtained for the Moran model (see, for example,
Watterson 1975). The Moran model will not be considered here.

3. THE SIMPLEST CASE: NO SELECTION AND NO
RECOMBINATION

Although genealogical processes are implicit in much of the work on
identity coefficients that has been carried on for many years, it was the
knowledge of the nature of the genetic material and the possibility of
obtaining sequence data (or restriction map data) that stimulated some
of the earliest work that considers the genealogical process directly. Wat-
terson’s (1975) remarkable paper describes the basic properties of gen-
ealogies under neutral models and marks the beginning of modern coalesc-
ent theory. The following description of the no-recombination genealogy
under the W-F neutral model draws heavily from the work of Watterson
(1975), Kingman (1980, 1982a,b) Griffiths (1980) and Tajima (1983).

To begin, we consider an ideal haploid species without recombination,
without geographic subdivision and without selection — a typical garden-
variety haploid species. We wish to examine properties of the genealogy
of a random sample of n individuals from this population. Let us label
the population from which the sample was drawn, generation 0. The
ancestral population ¢ generations back in time will be referred to as
generation .

The basic property of a sample drawn from such a population, upon
which much of the following is based, concerns the probability, P(n), that
all the n sampled individuals have separate distinct ancestors in the
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preceding generation. Consider first a sample of two individuals. The
probability that the second individual sampled has the same parent as the
first is 1/N, as under the W-F neutral model each individual of the previous
generation is equally likely to be the parent of any individual of the
current generation. Thus P(2) is 1—-1/N. If three individuals are sampled,
the probability that all three have distinct ancestors in the previous gener-
ation, is the probability that the first two have distinct parents X the
probability that the parent of the third individual drawn is distinct from
the first two parents. As there are N-2 individuals that are distinct from
the parents of the first two sampled individuals, the probability that the
third individual has a distinct parent from the first two, given that the
first two have distinct parents, is (N=2)/N = 1-2/N. In general, the
probability that n sampled individuals have n distinct parents in the
previous generation is:

4

n—1
2

P(n) = [[] (1=iN)~1- =+ (3)

We can ask the same question about these n distinct ancestors: What is
the probability that they have n distinct ancestors one generation earlier?
Clearly, this is also P(n). This means that the probability that the »
sampled individuals have n distinct ancestors in each of the preceding ¢
generations, and that in the ¢ + 1 generation back in time, two or more
of the sampled individuals have common ancestors is:

T

P(n) [1-P(n)] = N €

In words, the time back until the first occurrence of a common ancestor
is geometrically distributed and will be approximated by an exponential
n

2
throughout, the probability that more than two individuals of our sample
have common ancestors in a single generation is very small and will be
ignored. Thus with high probability, the recent history of our sample
consists of 1 generations in which n distinct lineages exist, and then at
generation ¢ + 1, a single pair of lineages ‘coalesce’ at the most recent

distribution with mean N/( ) For large N and small n, as we will assume

common ancestor of two of the sampled individuals. Each of the (;)

possible pairs of lineages are equally likely to form the coalescing pair.
To continue tracing the history of our sample back in time, we note that
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in the generations preceding the first coalescence, there are n — 1 ances-
tors or lineages to follow. The probability — each generation - that all of
these ancestors have distinct ancestors in the preceding generation is
P(n—1). So the time to the next coalescence is approximately exponen-
n—1

5 ) At this coalescence, each of the

tially distributed with mean N/(

-1
<n2 ) possible pairs of lineages are equally likely to coalesce at this node.

Note that one of these (n—1) lineages has two descendants in our original
sample, the other lineages having a single descendant in the sample. We
can continue in this way until all the lineages have coalesced into a single
lineage, the common ancestor of the entire sample of n individuals.

A genealogy of five sampled alleles is shown in Fig 1. The stochastic
process that generates a genealogy, referred to as the coalescent process,
can be summarized verv briefly. The time, 7(j), during which there are
J distinct lineages is approximately exponentially distributed, and if time
is measured in units of N generations, the mean of T(j) is:

£y = 1) )

The two lineages that coalesce at a node in the genealogy, say in gener-
ation ¢ + 1, are two lineages randomly chosen from the lineages present
in generation r. Notice that we have not had to concern ourselves with
lineages other than those that are ancestral to our sample. Also note that
the intervals between coalescences, the T(j)’s, are statistically independent
of each other. Also, it is important to note that the older parts of the
genealogy (the upper parts of the genealogy in Fig. 1), are identical in
statistical properties to the genealogies of smaller samples. For example,
the part of the genealogy above the most recent coalescent event in the
history of a sample of size n, is distributed exactly as the genealogy of a
sample of size n — 1. Generating such genealogies on a computer is trivial
(an example of a program is given in the Appendix).

These properties of genealogies apply to mitochondrial genomes as well
as to garden-variety haploid organisms. If mitochondrial inheritance is
strictly maternal and polymorphism within individual females is negligible,
then N is the number of females.

For a large population of N diploids, under the W-F model with random
mating, no recombination and no selection, the results are also the same,
except that N is replaced by 2N. The genealogy in this case should be
thought of as the genealogy for a specific locus within which no recombi-
nation occurs. The locus might consist of a single nucleotide site or, if
the recombination rate is sufficiently low, of many contiguous nucleotide
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sites that can be considered completely linked. For the model being
considered, sufficiently low means that Nr < 1, where r is the recombi-
nation rate per generation between the ends of the region being con-
sidered. If time is measured in units of N generations for haploid models,
and in units of 2N generations for diploid models, the results are exactly
the same for haploids and diploids, i.e. the mean of 7(j) is given by eqn
(5).

Unlinked loci in large populations are essentially independent and
will have their own independent genealogies. Linked loci, which have
correlated genealogies, will be considered later.

4. ADDING NEUTRAL MUTATIONS TO THE GENEALOGY

Given the properties of the genealogies just described, we can predict
properties of samples under various mutation schemes. As discussed in
the previous section, we will assume a constant-rate neutral mutation
process, in which each offspring gamete differs from its parent by an
average of y mutations. In addition, we will assume an infinite-site model
(Kimura 1969). Under this model, the locus is composed of many sites,
so that no more than one mutation occurs at any site in the genealogy of
our sample. The oft-employed infinite-allele model (Kimura and Crow
1964) is similar, assuming that each mutation produces a new allele, not
present anywhere else in the genealogy of the sample. For our purposes,
the infinite-site model and the infinite-allele model are essentially the
same but under the infinite-allele model one ignores how many mutations
distinguish alleles and notes only whether alleles are the same or different.

The first properties to be considered concern the distribution of the
number of mutations that occur on the branches of the genealogy of a
sample. Under the infinite-site model, this number of mutations is ident-
ical to the number of nucleotide sites that would be polymorphic in the
sample. The number of polymorphic sites in the sample, denoted S, is
often referred to as the number of segregating sites in the sample. First,
we consider the expected value of S.

From eqn (1) we can calculate the expectation of S from the expectation
of T, the total length of the genealogy. It follows easily from the
definition of Z(j), that the sum of the lengths of the branches of the

genealogy is _gziT(i). Therefore, from eqn (5), now measuring time in
units of 2N generations, it follows that

n n—1

ES) = g > E(T()) = 8 2} 1i (6)

i=2

where 6 = 4NVu (Watterson 1975). The variance of the total time is also
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easily obtained, and using eqns (2) and (6), one obtains (Watterson 1975):
n—1 n—1

Var($) =8 > 1i+62> 1/ (7)
i=1 i=1

In fact, any moment of S can be expressed in terms of the moments of
the T,. Watterson also showed that the number of segregating sizes is
approximately normally distributed in samples of sufficient size.

We can obtain the entire distribution of S, but first we consider the
probability that S = 0, for a sample of size 2. This is equivalent to the
expected homozygosity, E(F), or the probability that two sampled alleles
are identical. This probability will be derived in two ways. For two
sampled alleles to be identical under the infinite-site model (or the infinite-
allele model), it must be the case that no mutations have occurred on the
lineages that descend to them from their most recent common ancester
(denoted MRCA). Given ¢, the number of generations back to their
MRCA, the probability that no mutations have occurred in the descent
to the sampled alleles is e=2*. This follows from our Poisson assumption
about mutation. Therefore, if we take the expectation of e~2* over the
distribution of ¢, which is exponential with mean 2N in the diploid model,
we find:

x e—rlzN 1

—Zul e
L 2N ¢ T

E(F) = E(e~2) = (8)

This is a classic result (Kimura and Crow 1964) that can, of course, be
derived from recursions, but here one gets a sense of its connection to
the genealogy.

Equation (8) also illustrates a general connection between the infinite-
allele model and the coalescent process. For any model of the population
process, which determines the genealogical process, if the mutation pro-
cess is the infinite-allele constant-rate neutral mutation process that we
have been assuming, then the probability that two randomly sampled
alleles are identical is C(6) = E(e®), where this expectation is with
respect to the distribution of ¢, the time back to the most recent common
ancestor of two random alleles measured in units of 2N generations. The
identity coefficient with —6 as argument, C(—8), is also the moment-
generating function of ¢. The moments of ¢, and consequently moments
of §, are easily obtained from C(6) by standard methods. For example,
E(r) is —C'(0) and E(S) is —8C’(0), where C’'(0) represents the derivative
of C(6) with respect to 8 evaluated at 8 = 0. This is quite general. For
example, in models of gene conversion in multigene families, identity
coefficients have been obtained for pairs of alleles sampled in various
ways (Nagylaki and Petes 1982). The moments of the number of sites
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that would distinguish these alleles under an infinite-site model, can be
calculated as just described by taking derivatives of the identity coef-
ficients.

An alternative derivation of eqn (8) involves tracing the history of the
two sample alleles back in time, until either the MRCA of the alleles is
found or a mutation on one of the lineages is found. In each generation,
the probability, Pc,, that the MRCA occurs is 1/2N. Also, in each
generation, the probability, P,,,,, that one or the other of the two lineages
experiences a mutation is 2p. The two alleles can be identical if, and only
if, the first event encountered is a common ancestor event. Given that
one or the other event has occurred, and ignoring the possibility that
both occur in the same generation, the probability that the first event
encountered is the common ancestor event is:

Pca 12N 1

Pop+ Py 12N+2p 148 )

E(F) =

In a similar fashion, one can derive the entire distribution of the number
of mutations that have occurred since the MRCA of the sample of size
2. The probability, P,(j), of j mutations occurring on the lineages since
the MRCA, is the probability that the first j events, as we trace backwards
in time, are mutations and the (j + 1) event is a common ancestor event.
Thus, we have (Watterson, 1975):

. 6 \/ 1
Pa0) = (1+e)) 1+6 (10)
Using a similar argument, we can obtain the probability, Q,(j), that j
mutations occur in the time in which there are n ancestral lineages. To
get j mutations during this time, the first j events, during the time there
are n lineages, must be mutations, and the (j + 1)* event must be a
common ancestor event. Hence, this probability is

2

ny ’ 2N

0.(7) = (g) (;)

np,‘f"zw nu-’rﬁ

=< 0 )/ n—1 (i1)

0+n—1/ 6+n—1

The number of segregating sites in a sample of size n is the sum of the
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number that occur while there are n lineages, and the number during the
rest of the genealogy distributed just like the number in a sample of size
n—1. It follows that P,(j), the probability of j segregating sites in a sample
of size n, can be written as:

P.() = Z P 1(j=0)0,() (12)

The distribution of the number of segregating sites can quickly be calcu-
lated using this recursion. Tavaré (1984) obtained an explicit expression
for P,(j). The distribution of S is shown in Fig. 2 for 8 = 5 and n = 20.

The use of eqn (12) is illustrated by the following example. Recent.
surveys of polymorphism in the yellow-achaete-scute region of Drosophila
melanogaster revealed 9 polymorphic sites in 2112 nucleotide sites in 64
chromosomes examined (Aguadé er al. 1989). Estimates of 0 per base
pair from other regions of the D. melanogaster genome have averaged
about 0.005. Aguadé er al. wanted to determine if the observation of 9
polymorphic sites was consistent with the hypothesis that @ per base pair
in the yellow-achaete-scute region is 0.005. Using eqn (12), we can calcu-
late that the probability of 9 or fewer polymorphisms, in a sample of 64

Frequency

0.08 7
0.06
i R=0
B R=20 (Monte Carlo)
0.04
0.02 1
Q.OOJ HEHEBRL

< .35... .40, ., .45, ...

Fig. 2. The distribution of S, the number of segregating sites, in a sample of 20
alleles with 6 (=4Nyw) = 20. The no-recombination distribution (R = 4N = 0)
was calculated with eqn (12). For R = 20, the distribution is an estimate obtained
by generating 100 000 replicates by a Monte Carlo method described in the text.
The expected value of S for both distributions is 17.7, which can be calculated

using eqn (6).
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with 6 = 2112(0.005) = 10.6, is approximately 2 X 107°. Assuming the
equilibrium neutral model is correct, one must reject a value of 0.005 as
the per base pair mutation parameter for this region. If one assumed that
some recombination occurs in this region, the probability of 9 or fewer
polymorphic sites is even smaller.

5. RECOMBINATION

Let us consider first two loci. It is assumed that no recombination occurs
within each locus but, between the two loci, the probability of recombi-
nation is r per generation per offspring produced. If r = 0, the two loci
will always have the same genealogy. If r is large, in a large random
mating population, the genealogies of the two loci will be essentially
independent (see eqn 13). The difficult case is with intermediate levels of
recombination, when the genealogies at the two loci are correlated. Cle-
arly, the marginal distribution of genealogies for each locus under a
neutral model, is the single locus no-recombination distribution described
above. The only effect of linkage is to produce a correlation between the
genealogies for the two loci.

Let us begin by describing how one might simulate on a computer the
genealogy of a sample of two gametes, denoted a,(0)b,(0) and a,(0)b,(0).
We proceed, as before, backward in time. We trace the two lineages back
until either a coalescent occurs (probability 1/2N per generation) or a
recombination event occurs (probability 2r per generation). The time back
until one of these events is exponentially distributed with mean 2N/(1+R),
where R is 4Nr. The probability that the first event is a coalescent event
is 1/(1+R). In this case, both loci have their MRCA at this time and the
genealogies are complete. The other possibility is that the first event is a
recombination event. The first event is a recombination event with prob-
ability R/(1+R). In this case, one of the two lineages splits in two as
illustrated by the genealogy in Fig. 3. In this example, the first event, as
one traces backward in time, is a recombination event that occurs in
generation ;. In this example, the ancestral gamete, a(t,~1)by(t,—1), is
the recombinant descendant of two individuals in generation f;, which are
denoted a,(;)- and -b,(r,). At this point, there are three lineages to follow
back in time from the three ancestral gametes in generation f,. One
ancestral gamete, denoted a,(f,)b,(z,), is an ancestor at both loci to one
of the sampled gametes. One of the ancestral gametes, denoted a,(f;)-,
is an ancestor of the a, allele in the sample, but the b allele of this
ancestral gamete, indicated by a hyphen, has no descendant in the sample.
The history of this allele represented by the hyphen is of no direct interest.
The third ancestral gamete, -b,(1;), is the ancester at the b locus of the
b, allele in the sample. We continue back in time until the next event,
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Past

}

ai(ty) bi(ty) as{ty) — —ba(tt) ceeeeeeee- .
——
az(ty-1) ba(ty-1)

Present 21(0) bs(0) a,(0) bz(0)

Sampled alleles

Fig. 3. An example two-locus genealogy for a sample of size 2. In this case, the
first event, which occurs in generation ¢,, is a recombination event such that the
ancestor gamete a)(f,—1)b,(r;—1) is the recombinant descendant of the two
gametes ay(f,)- and -by(1;). The second event is a common ancestor event, labeled
CA,, at which time, the lineages of a,(0)b,(0) and a,(r,)- coalesce. It is at this
point in time, ¢, +1, generations ago, that the most recent common ancestor of the
sampled ‘a’ locus alleles occurred. The next event is a common ancestor event,
labeled CA,. At this time, 7,+1,+; generations ago, the most recent common
ancestor of the sampled ‘b’ alleles occurred.

Fig. 4. An example genealogy for an infinite-site recombination model. The two
samples gametes, labeled 1 and 2, are represented by the hatched and dotted
bars. Recombination events can occur anywhere along the bars. There are five
events in this genealogy, designated RE,, RE,, CA,, CA, and CA., in order from
most recent to most ancient. The most recent event, RE,, is a recombination
event that brought two segments together to form the ancestor of gamete 2.
Following lineages backward in time, as usual, the result of RE, is the splitting
of the lineage of gamete 2 into two parts, one being the lineage of the left end
of the gamete, and the other being the lineage of the right part of the gamete.
The next event back in the genealogy, labeled RE,, is also a recombination event
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with a crossover in the right-hand segment of an ancestor of gamete 2. At this
point in time, there are three distinct ancestors of gamete 2, each being an ancestor
of a different part of gamete 2. In contrast, gamete 1 still has a single ancestor.
The next event, CA,, is a common ancestor event involving two ancestors of
gamete 2. At this point, one of the two ancestors of gamete 2 is an ancestor for
two non-contiguous portions of gamete 2. The next event, CA,, is a common
ancestor event where finally the most recent common ancestor of parts of gametes
1 and 2 occur. The segments with most recent common ancestor at this point are
the left end, marked MRCA, and the right end also marked MRCA. The last
event, is a common ancestor event where the most recent common ancestor of
the sample gametes for the middle segment occurred.
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either a coalescent event between any of the three lineages (probability
(3)/2N per generation) or a recombination event (probability r per
generation). Note that, during this part of the genealogy, only recombi-
nations involving the lineage of a,(r;)b,(s,) are relevant. Recombinations
in the lineage of ay(f;)- do not result in any change in the state of
the process and are irrelevant to the genealogy of the sampled alleles.
Eventually, the two alleles at the a locus will coalesce and the two alleles
at the b locus will coalesce, and the two-locus genealogy will be complete.

By consideration of this two-locus process, it is possible to derive various
properties of the joint distributions of the times, ¢, and #,, back to the
most recent common ancestors of the a and b alleles, respectively.

Griffiths (1981a) derived properties of the joint distribution of the
number of segregating sites at each locus in samples of size 2, when each
locus is assumed to be an infinite-site Jocus. From Griffiths’ result. the
correlation of 7, and ¢, the times to the MRCA at locus a and b can be
found (Hudson 1983a; Kaplan and Hudson 1985):

R+18
Cor(tarto) = FriT3R+18 (13)

Consideration of this two-locus coalescent shows that the probability that
f, = I, is exactly the same as the correlation of 1, and 1, (Hudson,
unpublished).

Simulations based on the two-locus coalescent were used by Hedrick
and Thomson (1986) to study two-locus sampling properties of the neutral
model. Kaplan and Hudson (1985) considered the coalescent process for
several linked loci to calculate the homozygosity at a global locus made
up of several sub-loci between which recombination could occur.

Hudson (1983a4) and Kaplan and Hudson (1985) also considered an
infinite-site version of the above coalescent process, in which recombi-
nation could take place anywhere on a continuous interval that represents
a contiguous stretch of nucleotide sites. Figure 4 shows a representation
of the genealogy of a sample of two gametes under this model. The
process is very similar to the preceding two-locus case, except that recom-
bination takes place at random positions along the continuous interval
that represents the sequence. In this case, small contiguous segments are
likely to have similar genealogies, but the segments farther apart would
be likely to have quite different genealogies. The details of how to carry
out such a simulation are described in Hudson (1983a).

In the genealogy in Fig. 4, the MRCA of the segment of DNA in the
middle occurs farther back in time than the MRCA of the end segments.
In this sense, the size of the genealogy is larger for the middle segment
than for the end segments,and assuming that the neutral mutation rate is
the same all along the segment, we would expect the number of neutral
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mutations per unit length to be greater in the middle segment. In Fig. 5,
the outcome of a single realization of this genealogical process is shown
for a large contiguous chunk of DNA for a sample size 10. This figure
indicates how much the size of the genealogy, as measured by T,,,, can
vary from one segment to the next. The size of the segment of DNA
considered in Fig. 5 is such that 4Nr equals 100, where r is the recombi-
nation rate per generation between the ends of the region. Although
estimates are very rough, this has been estimated to correspond to approxi-
mately 5000 base pairs in D. melanogaster. (This number can be obtained
from estimates of per base pair recombination rate 0.5 X 10~% and effec-
tive population size 10°: (Hudson and Kaplan 1988; Hudson 1987.)

As before, the total number of segregating sites in a sample, S, con-
ditional on the genealogies of all the segments, is Poisson distributed with
mean 87/2, where in this case T is an average of the sizes of the genealogies
of each of the segments weighted by their lengths and 6 is 4N times the
mutation rate for the entire sequence. As the recombination rate
increases, the weighted average, T, is made up of greater numbers of

Sample size 10

Total time in tree

1+ ¥ T T T T T T

0 10 20 30 40 50 60 70 80 90 100
Position (in units of 4Nr)

Fig. 5. The total time in the genealogy of the sample, T,,, measured in units of
4N generations, plotted as a function of position, for a single realization of the
coalescent process for a neutral infinite-site recombination model. The total length
of the region of DNA considered is such that the 4Nr = 100, where r is the
recombination rate between the ends of the region. The horizontal axis is the
nucleotide position, as measured by the product of the 4N and the recombination
rate between the site and the left end of the region considered. Evidently, T,
varies considerably from site to site, over a region this size.
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relatively smaller segments that have less correlated genealogies. The
result is that the variance of T tends to zero, and S becomes Poisson as
the recombination parameter (R) tends to infinity (see Ewens 1979, p.
276). Kaplan and Hudson (1985) showed that the variance of S is

n—1

Var(S) = 6 (E 1/1') +62 Var(T) (14)
i=1
and that
n—1
2( 1/1'2) 23R+101 2R+13—\f’§; 13+\'5§’
Var(T) = ”LIIQZ* (—R+ = log( = __) (15)
2V97 2R+13+V97 13-197
. R—Sl <R2+13R+18))
2 °8 18

For sample size 2, the approximation for Var(7) was based on the
usual ‘diffusion approximations’, but for larger sample sizes there is no
theoretical justification for the approximation, except that Monte Carlo
simulations indicated that it works quite well in the cases examined,
namely with small to moderate values of R (Kaplan and Hudson 19853).
The number of recombination events in the genealogy of a sample has
been examined by Hudson and Kaplan (1985), and an estimator of R
based on inferred numbers of events was investigated. A recombination
event was inferred to have occurred between two polymorphic sites when
all four possible gametic types (haplotypes) involving the two sites were
present in the sample.

The distribution of S in a sample of size 20 for 8 = 5 and with R = 0
and R = 20 are shown in Fig. 2. The mean of S does not depend on R,
but this figure shows clearly how recombination can reduce the variance
in §. The distribution shown for R = 20 is based on 100 000 samples
generated by the algorithm described above. The variance of S in the
Monte Carlo samples was 28.04, whereas the variance calculated with

eqns (14) and (15) is 28.28.

6. ESTIMATING 6 OR N

One can use S to estimate 6 or, if the neutral mutation rate () is known,
the population size N. The two commonly used methods are moment
estimators. Because the expected number of differences between two
alleles is 8, an obvious estimator of 8 is 8, the average pairwise number
of differences between alleles in a sample (see Nei 1987, eqn 10.6). This
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is an unbiased estimator of 6. Tajima (1983) showed that under the W-F
mode] with no recombination, the variance of this estimator is (see also
Nei 1987, eqn 10.9):

n+1 2(n’+n+3) (16)

Va‘(é):a(n—n T on(n=1)

Watterson (1975) suggested an estimator based on eqn (6), namely:

6= S (17)

This estimator is clearly unbiased. Under the no-recombination model,
the variance of this estimator can easily be calculated using eqn (7),
because:

Var($)
5] ()

The variance of 6 is always less than the variance of 6. With recombination,
both of these estimators have substantially reduced variance. The variance
of 6 in the presence of recombination can be estimated using eqns (14),
(15) and (18).

In some circumstances, the reduced variance of S in the presence of
recombination may be justification for considering nuclear genes instead
of mitochondrial genes for certain problems. For example, recent studies
(Avise er al. 1988) of mitochondrial genes were used to estimate effective
population sizes, using prior estimates of n. Although practical consider-
ations concerning the relative ease of isolation of mtDNA compared to
nuclear DNA may mitigate against the use of nuclear DNA, more precise
estimates might be obtained with nuclear data.

For the no-recombination model, maximum likelihood estimates of 6
based on § can be obtained, and it has been shown that the maximum
likelthood estimates always exceed 6 (Tavaré 1984). I have examined a
small number of cases and always found that the mean square error of
the maximum likelihood estimate exceeds the mean square error of 6.

Var(f) =

7. MIGRATION AND GEOGRAPHIC STRUCTURE

A number of authors have utilized the genealogical approach to consider
properties of samples when there is geographic structure (Griffiths 19815;
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Slatkin 1987, 1989; Strobeck 1987; Tajima 1989, Takahata 1988). To
illustrate the concepts, let us consider a two-population symmetric island
model. Each subpopulation consists of N diploids. Each generation, a
small fraction m of each subpopulation is made up of migrants from the
other subpopulation. In other words, each individual’s parent was resident
in the same population with probability 1-m, and in the other subpopul-
ation with probability m. As with the panmictic model, the probability
that two alleles from the same subpopulation have a common ancestor in
the previous generation is 1/2N. Two alleles from different subpopulations
have negligible probability of having a common ancestor in the previous
generation. Putting these properties together, we can describe the genea-
logical process for a sample of alleles, n, from subpopulation 1 and n,
from subpopulation 2. We denote the state of the ancestral lineages-by
an ordered pair, (i,)), indicating that i ancestors reside in subpopulation
I and j reside in subpopulation 2. As usual, we trace the lineages back
In time, in this case until either a common ancestor occurs or one of the
lineages changes residence. This time is exponentially distributed with
mean

1
(3] (3)+ o)

measuring time in units of 2N generations and where M = 4Nm. Given
that one of the two events occurs, the probability that it is a common
ancestor event among the n, lineages in subpopulation i/ is:

)
(3] + () rrn )

If the common ancestor event occurs in subpopulation 1, the state of the
ancestral lineages changes to (n,—1, n,). The probability that the event
is a change of residence of a lineage in subpopulation ; is:

M

I‘l,-?

((3)+ (5] ema)

If a lineage changes from subpopulation 1 to subpopulation 2, working
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backward in time, then the state of the ancestral lineages changes to
(=1, ny+1). And the process continues.

As described, the process is amenable to implementation as a Monte
Carlo simulation. Strobeck (1987), Tajima (1989) and Slatkin and Maddi-
son (1989) have carried out Monte Carlo simulations based on this
approach.

To illustrate how analytical results can be obtained by this approach,
we calculate the probability of identity of two alleles sampled from the
same subpopulation, P(6), and the probability of identity of two alleles
from different subpopulations, P,(6). As noted earlier, we can calculate
the moments of § once these identity coefficients are obtained. We assume
a symmetric island model, as above, except with n subpopulations. We
trace backward in time in the genealogy of two alleles from the same
subpopulation, until either a coalescent, mutation or a migration event
occurs. If the first event is a coalescent event, probability 1/(1+6+ M),
the two alleles are identical. If the first event is a mutation, probability
6/(1+6+M), the two alleles are not the same. If the first event is a
migration, then the probability of identity of the two alleles is P4(6). This
leads to the following equation for P.(6):

1 6 M
PO = e m  Trera O e P® (19)

For two alleles from two distinct populations, only mutations and
migration events that bring the two lineages into the same subpopulation
need to be considered. If the first event is a mutation event, probability
8/(6+M/n), the two alleles are different. If the first event is a migration
event that takes one of the lineages into the subpopulation of the other,
probability (M/n)/(6+M/n), the probability of identity is P(6). This leads
to the following equation for P,(8):

M
n
Py(6) = 7 () (20)
0+—
n
Solving eqns (19) and (20),
_ (n-1)0+M
Fi(8) = (n=1)8°+6(n—1+Mn)+M @)
and
ad 22)

S PR o o By e
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These results are not new, having been obtained by several others without
consideration of the coalescent process (see Crow and Aoki, 1984, and
references therein). To obtain the expectation of the times to the common
ancestor, ¢, and t,, for two alleles from the same subpopulation and
different subpopulations, respectively, we can use the method described
earlier in Section 4. Treating the identity coefficients P,(8) and P4(6) as
moment-generating functions, the expectations of ¢, and ¢, are:

E(t) = Py(0)=n (23)

and

E() = —PA0) = n+" 1 @24)

The expected number of differences between two alleles from the same
subpopulation is 8 E(t,) = n#, and for two alleles from different subpopula-
tions 8E(r;) = n8+(n—1)6/M (Li 1976; Slatkin 1987; Strobeck 1987).
Therefore, the expected time to the common ancestor of two alleles
sampled from one subpopulation, as well as the expected number of
differences, is independent of migration rate. If M is small, the expected
time to the common ancestor of two alleles from different populations is
relatively large, as is their divergence. This is consistent with our intuition
that if the migration rate is low, the two subpopulations will be substan-
tially differentiated. This is illustrated by the genealogies in Fig. 6. Tajima
(1989) has used the coalescent approach to study the expected number of
segregating sites in samples larger than 2.

Although the mean number of differences between two alleles from the
same subpopulation does not depend on the migration rate, other aspects
of the distribution do depend on the migration rate. In Fig. 7, the
distribution of the average pairwise difference between 10 alleles sampled
from the same subpopulation is shown. In this case, there were a total of
three subpopulations and M = 4Nm = 0.2, and 6 = 5.0. Also shown is
the distribution of the same statistic when M = =, i.e. a panmictic popu-
lation with 8 = 15.0, and for a panmictic population with 6 = 5.0. The
distributions with M = 0.2 and M = = have the same mean, but otherwise
the distributions are quite different. The M = 0.2 case has its mode and
much of its mass around 5, with a very long tail. Except for the long tail,
the distribution looks much like the distribution for a panmictic population
with 8 = 5.0. This is because with the small migration rate, most of
the time coalescent events occur within the subpopulation without any
migration, and therefore the sample is like a sample from a single popu-
lation with parameter § = 5.0. In contrast, the M = = case has its mode

around 15.
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(a) (b) f

P S

Subpopulation 1 Subpopulation 2 Subpopulation 1 gubpopuiation
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Fig. 6. (a) An example of a genealogy for a sample of size 8, 4 from each of 2
subpopulations, when the migration rate is moderately high. Each migration event
is indicated by a dotted line with an arrow that indicates the actual direction of
movement of an individual migrant. In this case, there would be relatively little
differentiation of the two subpopulations. (b) An example genealogy with low
migration rate. In this genealogy there is a single migration event. Alleles from
within a subpopulation will be much more similar than alleles from different
subpopulations.

These genealogies can also be interpreted as genealogies of gametes bearing
different selected alleles (see Section 8). Subpopulation 1 would represent the
pool of S-bearing gametes, and subpopulation 2 would represent the pool of F-
bearing gametes. In this case, the dotted lines with arrows indicate mutations
making an F aliele into an S allele, and vice versa. If the mutation rate between
the selected alleles is high, sequences bearing different alleles will be no more
diverged than alleles bearing the same allele. If the mutation rate between F and
S is low, S- and F-bearing gametes will be relatively diverged from each other.
The genealogies could also represent the genealogy of a site linked to the selected
locus. In this case, the dotted lines with arrows would represent mutations between
the selected alleles and/or recombination events between the site and the selected

locus.
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Fig. 7. (a) The distribution of m, the average pairwise number of differences
between alleles in a sample of size 10 from a single subpopulation. The population
is made up of three subpopulations, each of diploid size N, with 8 = 4Np = 5,
and with M = 4Nm = 0.2 (solid bars) and M = = (hatched bars). The mean for
both distributions is approximately 15. (b) The distribution of the same quantity,
for a single panmictic population, with 8 = 4N = 5. Note the similarity with the

low migration case in (a).

8. BALANCING SELECTION

Kaplan et al. (1988) have shown how the coalescent process can be
analyzed under models with certain forms of selection. They focus primar-
ily on the case where some form of balancing selection maintains a two-
allele polymorphism at a particular nucleotide site, the ‘selected site’. It
is assumed that recurrent mutation between the two ’selected’ alleles,
designated F and S, occurs at rate v per replication. The analysis addresses
the question: For sites completely linked to the selected site, how is the
genealogy different from a genealogy of a neutral site isolated from any
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selection? When selection is weak and the frequency of the alleles at the
selected site can drift considerably, numerical results can be obtained with
some pain (Darden er al. 1989). Results are fairly simple when selection
is strong and unchanging, so that the frequencies of the selected alleles,
S and F, remain constant.

In the case of strong and constant selection, the coalescent process of
sampled alleles is analogous to the coalescent process for the subdivided
population model considered earlier, except that migration is no longer
symmetric. If the frequencies of S and F are p and ¢, respectively, then
one can consider the population to be subdivided into two subpopulations
of size 2Np and 2Ng. Mutation plays the role of migration. Each gener-
ation, an average of 2Ngv F alleles mutate (migrate) to the S allele
(subpopulation) and 2Npv alleles mutate in the other direction. This
means that a fraction, 2Ngv/2Np, of the S alleles in each generation,
approximately, are descendants of F alleles of the previous generation.
In other words, an § allele of one generation has as parent an F allele
with probability gv/p. If one is considering #, S alleles, the probability,
Pgk, that one of them has as parent an F allele is, approximately:

v
PSanlg“

p

Similarly, the probability, P, that one of n, F alleles has an S allele as
parent in the previous generation is:

pv
Pes = n,—
Fs zq

The quantities pv/q and gv/p are the analogues of migration in the subdiv-
ided population model. In this case, ‘migration’ is not symmetric and the
sizes of the two ‘subpopulations’ are not equal.

The probability of coalescent events are functions of the size of each
subpopulation of alleles. For example, the probability that two S gametes
have a common ancestor in the previous generation is approximately
1/2Np, and the corresponding probability for two F gametes if 1/2Ngq.
More generally, the probability, P, s, that for n, S alleles some pair will
have a common ancestor in the previous generation is:

)

PCA.S = 2A,}7

Similarly, for n, F alleles, the probability, P-4 s, that some pair of the
alleles will have a common ancestor in the previous generation is:



