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Abstract

In conventional phylogeographic studies, historical demographic processes are elucidated
from the geographical distribution of individuals represented on an inferred gene tree.
However, the interpretation of gene trees in this context can be difficult as the same demo-
graphic/geographical process can randomly lead to multiple different genealogies. Likewise,
the same gene trees can arise under different demographic models. This problem has led
to the emergence of many statistical methods for making phylogeographic inferences. A
popular phylogeographic approach based on nested clade analysis is challenged by the fact
that a certain amount of the interpretation of the data is left to the subjective choices of the
user, and it has been argued that the method performs poorly in simulation studies. More
rigorous statistical methods based on coalescence theory have been developed. However,
these methods may also be challenged by computational problems or poor model choice.
In this review, we will describe the development of statistical methods in phylogeographic
analysis, and discuss some of the challenges facing these methods.
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Introduction

The objective of phylogeographic studies is to use phylo-
genetic methods for elucidating historical and ancestral
processes in a geographical context (e.g. Avise et al. 1987;
Avise 1989). The field rose to prominence in the late 1980s
and early 1990s when estimation of gene trees from human
mitochondrial DNA (mtDNA) placed the root of the human
gene tree in Africa, supporting the out-of-Africa hypothesis
(e.g. Vigilant et al. 1991; Fig. 1). Since then, phylogeographic
studies have become one of the central pillars of population
genetic analysis. Basic phylogeographic analysis typically
consists of the estimation of a tree using phylogenetic
methods, or possibly the estimation of a network. The
branches of the tree are then related to historical events in
a geographical context. For example, the emergence of a
clade only existing in a particular area may be interpreted
as evidence of a historical event by which a population, or
group of individuals, separated themselves from other
individuals. Likewise, if the individuals in two geographical

areas form reciprocal monophyletic clades, with the
exception of one or a few individuals, the existence of these
individuals may be interpreted as evidence for migration
between the two geographical areas. In general, a basic
premise for much phylogeographic work is that the
branches on the tree can be interpreted as evidence for the
occurrence of specific historical demographic events in a
geographical context.

The use of phylogeographic methods has bloomed during
a period where population genetic theory also has been
increasingly dominated by tree-thinking. The seminal
work by Kingman (1982) and Hudson (1983) laid the foun-
dations for modern coalescent theory. Coalescent theory
provides a mathematical framework which describes the
distribution of gene trees in populations. It can be used as
a mathematical tool for deriving theoretical population
genetic results, and also more directly, to connect demo-
graphic models with gene trees. Coalescent theory has
helped merge the areas of population genetics and phylo-
genetics, making the gene tree the focus of study in both
areas. However, while the tradition from phylogenetics is
to estimate a tree and use the estimated tree to deduce
evolutionary relationships, the population genetic tradition
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sees the tree as a random outcome of a population genetic
process. Therein lies the fundamental difference between
phylogeographic and theoretical population genetic think-
ing: phylogeographic studies traditionally assume that
ancestral history can be directly deduced from estimated
gene trees, whereas population genetic theory asserts that
gene trees are random outcomes of stochastic population-
level processes.

It was recognized quite early on that phylogeographic
studies must be followed by statistical inferences (e.g.
Templeton et al. 1995). One line of research for doing this is
based on coalescent theory and tools from computational
statistics (e.g. Slatkin 1987; Griffiths & Tavare 1994a, b; Kuhner
et al. 1995; Wakeley & Hey 1997; Beerli & Felsenstein 1999;
Nielsen & Wakeley 2001; Beaumont et al. 2002). Another
approach is based on analysing estimated gene trees, or
networks, in a cladistic framework (e.g. Templeton et al.
1987, 1995, 1998, 2004; Posada et al. 2000, 2005, 2006). In this
review, we will discuss and compare these two different
methodological frameworks. The aim is to give an over-
view for the nonmathematical practitioner that introduces
current methods of statistical inference in phylogeographic
studies and provides some guidelines for their use. We will
not provide a detailed description of individual computer
programs for performing data analyses, but instead refer to
the recent review by Excoffier & Heckel (2006). We will start
this review by briefly discussing some of the challenges
facing phylogeographic analysis, mainly from the perspec-
tive of theoretical population genetics.

Why are trees random?

A basic insight from population genetic theory is that gene
trees sampled from different individuals in a population

are random realizations of a stochastic process. To realize
this, it may help to think of the gene trees describing the
ancestry of a genetic marker, for example mtDNA, in three
individuals in a population (Fig. 2). Individuals who are
very closely related (through the maternal line) share a
common ancestor very recently, and individuals who are
distantly related share a more ancient most recent common
ancestor (MRCA). The gene trees relating the individuals
then depend on which individuals we have sampled.
Three individuals which are very closely related will have
gene trees which tend to be very shallow with late MRCAs
(Fig. 2a), but if one of the individuals happens to be more
distantly related, the gene trees will be deeper with a more
ancient MRCA (Fig. 2b).

Clearly, the (mtDNA) gene trees relating individuals
within a population will differ depending on which indi-
viduals we have sampled.

However, it is even more important to realize that the
distribution of gene trees may be radically different among
populations that have experienced the exact same demo-
graphic history, i.e. same population sizes and same
geographical distributions, through time, and among loci
within the same population. The randomness of gene trees
arises because some individuals leave many offspring and
others only a few, and because of the random segregation
of alleles in diploid organisms. If all females in a popu-
lation always have exactly one female offspring in each
generation, there would be no mtDNA gene tree and the

Fig. 1 The human mtDNA tree has its root in African populations
(A) and not in populations outside Africa (O). This has been
interpreted as independent evidence supporting the out-of-Africa
theory of an origin of modern humans on the African continent.

Fig. 2 Gene trees sampled within populations have a strong
random component and the tree in (a) and in (b) could easily have
been obtained under the same demographic histories. The fact that
gene trees are random also implies that there is a strong random
component associated with the presence or absence of reciprocal
monophyly between populations and the placement and time of
the most recent common ancestor (c).
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mitochondrial evolutionary lineages would extend back to
the dawn of time. However, in real populations, there is
some variance in the number of copies of a particular allele
transmitted to the next generation. In each generation, some
lineages will die out because of individual(s) not transmitting
the alleles they carry to the next generation, while other
lineages will emerge as some individuals pass the same
allele on to multiple offspring. The structure of the gene tree
then depends on which particular individuals happened to
leave descendents in the next generation(s) and, in nuclear
loci of diploid organisms, which of the two alleles in a locus
that was transmitted during reproduction. Thus, even if we
consider all of the individuals in the population, the time to
the MRCA and other properties of the tree will have a strong
random component. It will depend on those ancestral
random events occurring while offspring replaced parents
in past generations. For example, in a large diploid popu-
lation of constant effective size Ne, the expected time, and
the variance in the time to the MRCA of all individuals is
4Ne and , respectively. Notice the very large
variance (it would be smaller if the population had experi-
enced population growth), which tells us that the time to
the MRCA of a single locus may in itself not be very
informative about the population history — even if we
could estimate it with absolute certainty. The age of the
‘mitochondrial Eve’ in humans, may provide a bit of infor-
mation about the effective population size of humans but,
without making a series of further assumptions, it tells us
very little about the origin and demographic history of
modern humans. When sampling mtDNA or Y chromo-
some data, we are only observing one possible genetic
history out of many possible genetic histories for the same
population, and it may be misleading to interpret the
structure of the gene tree, and properties such as the time
to the MRCA too strongly. For nuclear data, the problem can
be circumvented by considering many loci at the same time.

The fact that gene trees from individuals within a popu-
lation are random also implies that they are similarly random
when using individuals from different populations. For
example, if we have sampled individuals from two popu-
lations which diverged from each other T generations in
the past, the gene tree of the sampled individuals for a
particular marker may or may not show reciprocal mono-
phyly. If T is on the same order as the effective population
size for one of the populations, the individuals in the popu-
lation may (Fig. 2c, blue), or may not (Fig. 2c, red), have
found an MRCA at T generations in the past when the
populations split. If they have not found an MRCA, indi-
viduals may be more closely related to each other between
populations rather than within populations. Such events,
known as lineage sorting (e.g. Hudson 1983; Tajima 1983;
Neigel & Avise 1986; Pamilo & Nei 1988), may seriously
confuse studies based on the assumption that gene genealo-
gies directly reflect population histories. The probability

that lineage sorting occurs depends on a number of factors,
including divergence times and effective and historical
population sizes.

Phylogeographic uncertainty

The randomness of genealogies has profound implications
for the interpretation of estimated gene trees. Any particular
structure of the tree may have arisen, not because of a
particular ancestral demographic, such as movement of
people, but because of the random processes by which
some individuals leave many descendents and some leave
only few. Armed with this knowledge, it may be worth
considering the old problem of inferences regarding the
location of the root in a gene tree. For example, the
placement of the root in humans within the African
population has been interpreted as evidence for an African
origin of humans. However, the placement of the root is
strongly affected by random events and the relative
population sizes. To illustrate this, we used a very simple
model in which two populations, of size N and aN,
diverged from each other N/2 generations ago, and have
experienced no gene flow between them. The ancestral
population size is also equal to N and we assume 30 gene
copies have been sampled from each population. We then
find the probability that the first population is monophyletic,
while the second is not, so that the root is unambiguously
placed in the second population (Fig. 3).

As expected, the relative effective population sizes
determine the chance that the root falls within the first popu-
lation. Placement of the root may not, without further
assumptions, identify which population is ancestral. Only
if we make the additional assumption that the derived
population always has a smaller effective population size
can we interpret the placement of the root as unambigu-
ously informative regarding which population is ancestral.

16 3 92 2/ ( )Ne π −

Fig. 3 The probability of monophyly of one population and the
root in the tree falling inside the other population, as a function of
the relative population size (a) of the two populations.
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But in that case, it might be easier simply to estimate the
effective population sizes to determine which population
is ancestral.

The relationship between demographic models and
gene trees can at times be highly complex. There may be
multiple demographic models that fit a gene tree equally
well. For example, ancestral population sizes and diver-
gence times can sometimes be confounded. With data from
a single locus (e.g. mtDNA), models with short divergence
times and large ancestral population sizes may sometimes
provide just as good an explanation of a gene tree as a
model with long divergence times and small ancestral
population sizes (Fig. 4). Long divergence times in a gene
tree may be caused by either large ancestral population
sizes or long divergence times in the population tree.
Phylogeographic studies face the challenge that there may
be many equally parsimonious demographic explanations
for the same data. As the complexity of proposed demo-
graphic scenarios increase, the chance that there are multi-
ple equally parsimonious demographic explanations of
the data also increase. Only by considering explicit
demographic models will it be possible to determine which
population histories are compatible with the data and
which are not.

Assumptions and inferences

Given the preceding discussion, one might get the impression
that it is near impossible to make meaningful statements
about ancestral population history based on gene trees.

This contrasts with the fact that phylogeographic analyses
have been a tremendously powerful tool in the analysis of
population genetic data. The reason might be that there is
a set of realistic assumptions under which the gene tree
directly reflects population history: if population migration
events always are associated with population bottlenecks,
new populations are more likely to be monophyletic because
many lineages will be forced to coalesce during the
bottleneck. It is possible that the bottleneck assumption is
justified in a number of species, where new geographic
territory is colonized by only few individuals. For example,
it could be assumed that only very few individuals were
involved in the first migrations of humans out of the
African continent. Simple phylogeographic analyses may
lead to the right results, even without the use of any
statistical methods or model fitting, if population movements
always are associated with very strong bottlenecks in the
population size, and if there has been a subsequent absence
of gene flow among populations. However, if the assumption
of population movements being associated with strong
bottlenecks is not true, naive inferences from gene trees
may be misleading.

Nested clade phylogeographic analysis

Nested clade phylogeographic analysis (NCPA) is a method
for turning phylogenetic information into inferences about
the demographic history of populations. The procedure
was first introduced in Templeton et al. (1995), based on an
earlier cladistic approach (nested clade analysis, NCA)

Fig. 4 A model with recent divergence
between populations (a) and large ancestral
population size (NA) may, in the presence of
reciprocal monophyly, provide just as good
a fit to the data as a model with old
divergence and small ancestral population
(b). If the time the two ancestral lineages
diverge from each other in the ancestral
population (t) is changed by a factor, c, a
model with ancestral population size NAc
will provide exactly as good a fit as the
original model.
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designed to study association between genotype and
phenotype (Templeton et al. 1987, 1988, 2005; Posada et al.
2000, 2005, 2006). NCA is based on the idea that we cannot
study the associations between phenotype and genotype
as if observations are independent, because there is an
underlying correlation structure induced by the genealogy
(Felsenstein 1985). In the original NCA procedure it was
noted that there is a similarity between the natural structure
of a gene tree and a hierarchically nested analysis of
variance: lineages can be grouped together into clades,
which can then be nested in an agglomerative way. Thus,
by performing a nested analysis of variance on phenotypic
traits it is possible to test whether there is significant
variation in the trait along different branches of the tree. In
this regard NCA is related to the comparative method
(Felsenstein 1985; Harvey & Pagel 1991; Pagel 1997) in
which the association between two traits is analysed, taking
into account phylogenetic history. Whereas the comparative
method has been concerned with the evolution of traits
along phylogenetic trees, NCA has focused on the evolution
of traits within populations. The NCPA procedure naturally
arises from the early NCA by regarding the geographical
location as a phenotypic trait evolving along the genealogy.

The first step in standard NCPA is to construct a haplo-
type network. The network is then used to group haplo-
types into nested clades. Given the clade structure and
either the geographical coordinates of sampling locations,
or a matrix of geographical distances between locations, it
is then possible to compute statistics that describe the
geographical spread of clades. Associated with each clade
are a number of statistics, principal among them Dc, which
measures the geographical spread of members of a clade
relative to their mean location, and Dn, which measures the
geographical spread of members of a clade relative to the
mean location of all members of the nesting clade. By
permuting the geographical locations of samples, the prob-
ability of observing as extreme or more extreme values of
these statistics can be computed. If any clade has at least
one significant statistic (typically at the 0.05 level), then
an ‘inference key’ is consulted, providing a qualitative inter-
pretation of the result. The key leads to statements such as:

12 Are the Dn and/or I–T Dn values significantly reversed
from the Dc values?

• No – contiguous range expansion.
• Yes – go to step 13.

These statements are then used directly in published
analyses. Since there may be many clades with significant
statistics, the key is often consulted many times, and this
may lead to a number of different inferences. Those conclu-
sions that are derived from higher-level clades in the
nesting hierarchy are assumed to pertain to events that
occurred earlier in time.

The key was first enunciated in Templeton et al. (1995),
based on detailed reasoning outlined in that study. The
justification for particular inferences is plausible. For
example, it is intuitively plausible that under isolation by
distance, the Dc statistic should tend to increase with
increasing clade level, as noted in question 4 of the inference
key of Templeton (2004).

The procedure has been extended to deal with multiple
loci (Templeton et al. 2002). In this case, inferences are
regarded as concordant in space if two or more loci infer
the same process at the same location.

Ambiguity in the NCPA

The multiple steps of the NCPA procedure each rely on a
series of specific methodological choices. For example,
most sequence data will not give rise to a uniquely
parsimonious network due to the presence of homoplasy,
caused by recurrent mutation and recombination. Some
additional assumptions must, therefore, be introduced
to accommodate homoplasy. The tcs package, which
implements a method called statistical parsimony (Clement
et al. 2000), is often used to construct the haplotype network.
tcs accommodates homoplasy by inserting additional edges
into the network representing alternative evolutionary paths,
producing loops in the network. However, there are many
other algorithms available, and it appears that these may
often lead to rather different networks (Cassens et al. 2005).

The second step in the NCPA procedure, the construc-
tion of nested clades, also relies on specific methodological
choices. Most publications aim to reproduce the procedures
suggested in the studies of Templeton and colleagues
(Templeton et al. 1987; Templeton & Sing 1993), although,
as noted in Panchal & Beaumont (2007), there are some
uncertainties in the interpretation of the published sugges-
tions for nesting.

However, arguably the biggest level of ambiguity is
introduced by the interpretation of the inference key. Given
the complexity of information that could be covered by the
key, one might speculate whether different inferences could
also have been obtained equally plausibly by focusing on
other patterns in the data. To put it another way, each
question in the inference key requires the user to look at a
particular pattern in their data (such as in question 12,
above). The decision to focus on this pattern, among the
myriad patterns that are possible in the data, has been
made by the author of the key, and it is not clear whether
different inferences would be made had a different, similarly
plausible, question been asked.

Performance of NCPA in simulation studies

The performance of NCPA has been investigated either by
applying the method to simulated data, in which the true
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demographic history is known (Knowles & Maddison
2002; Panchal & Beaumont 2007), or to data from natural
populations in which the history is assumed to be known
(Templeton 2004). A problem with NCPA is that it was not
developed as an automated procedure. Two key places —
the nesting of clades and the consultation of the inference
key — require some judgment by the user. This has meant
that its performance on simulated data sets has been
difficult to examine. Knowles & Maddison (2002) performed
simulations in which they simulated a population tree for
three populations (i.e. a common ancestral population that
is then subdivided by two sequential vicariance events).
They then applied the NCPA procedure ‘by hand’. They
examined 10 cases, and the results indicated that the NCPA
procedure was unable to recover the true scenario of
allopatric fragmentation. In addition, since demographic
processes were inferred that were not actually simulated
in the data, they concluded that NCPA had a high false-
positive rate. Knowles and Maddison noted that for the
particular parameter settings they used, it might have
been difficult for any method to infer the true population
history, but emphasized that standard approaches
typically had ‘honest’ false-positive rates whereas NCPA
typically appeared to result in an inference that was not
correct.

It was uncertain, however, whether these false-positives
arose because the method detected some pattern or struc-
ture in the data but misattributed the cause, or whether
there is an intrinsic feature of the method that generates
false positives. To examine this further, Panchal & Beau-
mont (2007) automated NCPA by devising algorithms to
perform the nesting of clades and the consultation of the
key, and then pipelined these together with the application
of tcs and GeoDis to provide a unified process that takes
DNA sequences and their geographical location and outputs
inferences from the key. Panchal & Beaumont (2007) simu-
lated sequence data from a panmictic population, but
allocated the sequences randomly to geographical locations
on a lattice. A very high false-positive rate was the main
observation from this investigation, agreeing with the
earlier observation of Knowles & Maddison (2002). For a
given data set, there is often a much greater than 50%
chance that the inference key is consulted at least once even
if there is no geographical structuring in the data. Of the
positive inferences generated by NCPA on these simulated
data sets, the two that were most common were ‘restricted
gene flow with isolation by distance’ and ‘contiguous
range expansion’. Panchal & Beaumont (2007) surveyed 68
publications published between 2000 and 2004 that used
NCPA, and showed that these inferences were also the two
most commonly observed in the natural data. Furthermore,
there was a significant association between the rank ordering
of the frequency of different inferences in the simulations
and in the natural data.

The main reason for the high false-positive rate appears
to be that the method does not account for the multiple testing
problem that arises because there are many statistics
associated with each clade. In the use of NCA for testing
phenotype/genotype associations based on the program
TreeScan (Posada et al. 2005; Templeton et al. 2005), a
statistical procedure known as free step-down resampling
(Westfall & Young 1993) is used to control for multiple
testing. However, in the case of NCPA, the structure of tests
is more complicated, and it is unclear how to rectify the
multiple testing problem.

NCPA and the ‘Forer effect’

Empirical studies often find that the outcomes of NCPA are
consistent with known historical information, and are
supported by other approaches, such as the model-based
methods discussed below. For example Pfenninger &
Posada (2002), studying a species of snail, and Sunnucks
et al. (2006), studying two species of flatworm, compared
results from NCPA with those of, respectively, Migrate
(Beerli & Felsenstein 1999) and Fluctuate (Kuhner et al.
1995, 1998), both model-based coalescent methods, and
concluded that there is good concordance between methods.

There are two possible explanations for the discrepancy
between the conclusions of empirical studies and simulation
studies. One possibility is that real data, somehow, are more
suitable for NCPA than simulated data, as noted above.
Chikhi & Beaumont (2005) discuss the possibility that
demographic histories consisting of sequential bottlenecks
could give a strong signal in the haplotype network that is
easier to detect using NCPA. Alternatively, the inherently
subjective nature of the NCPA procedure seems to enable
researchers to find answers that coincide with those from
other approaches. There is a tendency for NCPA to give a
number of different ‘answers’ for a data set, particularly if
there are a large number of clades. To some degree it is,
therefore, up to the user to choose the most suitable among
several possible answers. For example, in the study of
Sunnucks et al. (2006), two inferences of long distance
dispersal are considered unlikely and discounted, whereas
inferences of fragmentation, contiguous range expansion,
and restricted dispersal by distance appear to be consistent
with other tests, while an inference of past fragmentation
followed by range expansion, while not supported by any
standard test, was considered reasonable. It is a well-known
phenomenon in psychology that when predictions are
sufficiently ambiguous, there is a tendency for subjects to find
that their experiences are consistent with these predictions
— an example is the ‘Forer effect’ (‘Barnum effect’) in per-
sonality assessment (Forer 1949). Forer gives an example
whereby a group of people were subjected to a personality
test but then provided with identical assessments (a list of
13 statements, for instance: ‘you have a tendency to be
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critical of yourself’; ‘you have found it unwise to be too frank
in revealing yourself to others’; ‘disciplined and self-
controlled outside, you tend to be worrisome and insecure
inside’). Virtually all respondents agreed that the personality
test was effective, and that their own assessments were
accurate. Such a tendency, of course, underpins the
widespread interest in newspaper horoscopes (Fichten &
Sunerton 1983).

However, we should emphasize that the possibility for
over-interpretation of results based on estimation of trees
and networks is not unique to the NCPA method. There
has been a long tradition, particularly in human genetics,
to interpret estimated trees or network very strongly in a
geographical context without properly accounting for the
stochasticity introduced by the coalescent and/or applying
explicit statistical methods. A more detailed discussion of
this problem can be found in Goldstein & Chiki 2002).

Coalescent-based methods

Model-based inference in population genetics comes in a
number of different flavours, discussed in more detail in,
for example, Hey & Machado (2003) and Beaumont &
Rannala (2004). In this study, we will concentrate on
methods based on likelihood, which includes Bayesian
inference. The likelihood function is simply the probability
of obtaining the data (or any function proportional to this
probability). By ‘data’, we mean the types of different
genetic variants and their frequencies in a sample. In
mathematical notation, the likelihood is given by p(X|Θ),
where X is the data, Θ is a vector containing all the
parameters of interest, and ‘|’ is read as ‘given’ or ‘conditional
on’, indicating here that the probability is calculated for a
particular value of the parameters. Statisticians often prefer
to base inferences on the likelihood function, because all
the information in the data regarding the parameters is
captured by this function. The parameters can, for example,
be migration rates, effective population sizes, and/or popu-
lation growth rates. Estimates of parameters can then be
obtained, for example, by maximum likelihood. The
maximum-likelihood estimate of a parameter is the value
of the parameter that maximizes the likelihood, i.e. which
gives the highest value of p(X|Θ).

The calculation of the likelihood function in population
genetics is very challenging. Only in very simple cases
(e.g. Ewens 1972) can we explicitly write down a formula
that gives the probability of the data, given values for a
parameter. However, such formulas are not available in
closed form, even for the simplest demographic models,
for DNA sequence data, microsatellite markers, etc. A
breakthrough in demographic inference came in the late
1980s and early 1990s with the observation that the proba-
bility of the data in population genetics could be calculated
by combining computational methods from phylogenetics

with coalescence models (Felsenstein 1988, 1992). While the
field of phylogenetics had developed methods for con-
necting data with a tree, coalescence theory now provided
mathematical methods for connecting demographic or eco-
logical models with a tree. The likelihood function could
then be calculated by considering all possible trees and
multiplying the probability of the data given the tree with
the probability of the tree given the demographic parameters.
In mathematical notation, we write (Felsenstein 1988):

(eqn 1)

The integral is really a sum over all possible trees (T), and
a multiple integral over all the possible branch lengths. Ω
indicates the set of all possible trees. The first expression
inside the integral is the probability of the data given
the tree, which can be calculated using the methods
from phylogenetics. The second term inside the integral
is the probability of the tree given the parameters of the
demographic model, which can be calculated using coale-
scence theory. This expression takes advantage of the fact
that when the tree is known, the probability of the tree can
be calculated without knowledge of the demographic
model. The only problem here is that the integral, in general,
cannot be solved directly by any known method. Instead,
a number of different numerical and simulation-based
methods have been developed.

Methods based on the full likelihood

The two main methods used to evaluate equation 1 using
simulations are based on Markov chain Monte Carlo
(MCMC, e.g. Kuhner et al. 1995, 1998; Wilson & Balding
1998; Beaumont 1999; Beerli & Felsenstein 1999; Nielsen
2000; Nielsen & Wakeley 2001; Hey & Nielsen 2004) and
importance sampling (IS, e.g. Griffiths & Tavare 1994a, b;
Nielsen 1997; Stephens & Donnelly 2000; Fearnhead &
Donnelly 2001). Both methods are based on simulation of
a large number of trees. If the methods are constructed
correctly, calculations based on these samples of trees
can provide a very close approximation to the likelihood
function, and inferences proceed by finding maximum-
likelihood estimates, or by the use of Bayesian methods
(for a review, see Stephens 2007). In Bayesian methods, a
so-called prior distribution, p(Θ), of the parameters is
assumed, which enables the calculation of a posterior
distribution, p(Θ|x). The prior and posterior distributions
then summarize the researcher’s knowledge about the
parameter before and after observing the data.

These methods have been widely applied to a number of
different scenarios: the standard model with constant
population size with different mutation models (Griffiths
& Tavaré 1994a, b; Kuhner et al. 1995; Wilson & Balding

p x p x T p T dT( | ) ( | ) ( | )Θ Θ=

Ω

�
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1998; Nielsen 1997); models of varying population size
(Griffiths & Tavaré 1994b; Kuhner et al. 1998; Beaumont
1999; models with migration (Nath & Griffiths 1996; Beerli
& Felsenstein 1999, 2001; De Iorio et al. 2005); models with
vicariance and migration (Nielsen & Wakeley 2001; Hey &
Nielsen 2004); and even models with vicariance, migration,
and population growth (Hey 2005). Two features are imme-
diately apparent: the development of these methods occurred
at a similar time to, and in parallel with, the work on network-
based approaches such as NCPA; and, while not yet able to
deliver the full panoply of inferences claimed for network
methods, it is still possible to address a much wider set of
questions than hitherto. A difficulty with these techniques
is that they are complicated to program, which slows devel-
opment, and it is difficult to obtain a sufficiently represent-
ative sample of genealogies over the parameter space,
which manifests itself as poor convergence of the MCMC.
To solve the latter problem typically requires extensive
computational resources, and some ingenuity on the part
of the user in tweaking the details of how the MCMC is run.
These issues, which are discussed in more detail in the next
section, have delayed the introduction of more model-based
population genetic analysis, but have also encouraged the
development of approximations.

An example of a likelihood-based inference is shown in
Fig. 5. Fedorov et al. (2008) analysed cytochrome b sequences
from the Eurasian wood lemming (Myopus schisticolor).
They used the im program (Hey & Nielsen 2004; Hey 2005;
Won & Hey 2005), in addition to a number of other phylo-
geographic analyses, to elucidate the demographic history
of this species. We have reproduced part of their analyses
of DNA sequences from the western and eastern populations
using the program Mdiv (Nielsen & Wakeley 2001). The
results are presented in terms of the likelihood function of
two of the parameters: M, the migration rate per generation
multiplied by the effective population size, and T, the
divergence time in generations between the populations,
also multiplied by the population size.

Notice that the highest likelihood for M is found very
close to zero. This implies that there is little or no evidence
for ongoing migration between these two populations. In
contrast, the estimate of T, given by the peak of the likeli-
hood function, is about T = 1. The likelihood function for T
is sharply peaked and the likelihood is close to zero for
values of T < 0.25. As is often the case in analyses of a single
locus, large values of T are more difficult to exclude when
allowing for migration. The likelihood converges to a positive
value for large values of T, corresponding to the likelihood
obtained under a pure migration model without a vicariance
event. However, the likelihood is larger for T = 1 than for
high values of T, showing that the data do not support the
hypothesis of equilibrium migration between the two
populations (T = ∞).

The conclusions from the analysis of the Fedorov et al.
(2008) data are not surprising, considering that there is
reciprocal monophyly between the two populations.
Reciprocal monophyly is more likely to arise when there is
no ongoing gene flow. However, the likelihood analyses
allowed us to quantify what the absence of reciprocal
monophyly, and the other genealogical information in the
data, implies about the demography of the species.

Approximate methods without mutation

There are a number of approximations which have been
used when full likelihood methods have not been feasible,
computationally tractable, or flexible enough. One useful
class involves the assumption that the genetic variation we
see at several locations in space or time can be regarded as
being derived from a common ancestral stock of variation
that is then distributed either spatially or temporally
purely through the agency of random genetic drift. The
advantage here is that the models deal with gene or
haplotype frequencies, and do not take mutations into
account. This simplifies the calculations considerably.
Examples include the estimation of effective population

Fig. 5 Likelihood surface for divergence
time (T) and migration rate (M) between
western and central Eurasian wood lem-
mings (Mycopus schisticolor), estimated using
the Mdiv program (Nielsen & Wakeley 2001)
based on data from Fedorov et al. (2008).
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size from temporally spaced samples (Wang & Whitlock 2003;
Anderson 2005), the estimation of immigration rates in
island models (Balding & Nichols 1997; Foll & Gaggiotti
2006), the estimation of divergence times/effective
population sizes in allopatric populations (Nielsen et al.
1998), and the analysis of admixture (Chikhi et al. 2001;
Wang 2003). The use of these models is restricted to
situations in which the mutation rate is typically much
lower than the migration rate, or the reciprocal of the
divergence time.

ABC methods

Recently, a group of techniques, variously called likelihood-
free inference, or approximate Bayesian computation (ABC),
have been quite widely applied in population genetics.
These methods typically require the data to be compressed
into summary statistics. A large number of simulations are
then performed. The main idea is that an approximation of
the likelihood — in this case, the probability of obtaining
the observed summary statistics measured from the data —
is proportional to the number of simulated data sets
yielding summary statistics that lie within some small
distance of the summary statistic computed from the
observed data. With this approximation, it is then possible
to apply all standard likelihood-based techniques for
inference, both frequentist (Weiss et al. 1997) and Bayesian
(Pritchard et al. 1999). The key to successful application of
these methods is how well the summary statistics capture
the relevant properties of the data, and how similar the
approximated likelihood surface is to the true likelihood
surface at a given distance from the target (observed)
summary statistics. Typically, the likelihood surface varies
rapidly with increasing distance from the target (Beaumont
et al. 2002), and a variety of techniques have been developed
to try to correct for this (Beaumont et al. 2002; Marjoram
et al. 2003; Sisson et al. 2007).

The statistical properties of likelihood-free methods can
be examined in precisely the same way as for likelihood-
based techniques. Thus, it is possible to simulate data sets
with known parameter values and examine performance.
Indeed, it is particularly easy for ABC methods because the
simulations that are used in inference need only be per-
formed once, and then applied to many different data sets.
Most published studies that have used ABC have therefore
been able to examine in some detail the statistical properties
of their implementation. In those cases where it has been
possible to make comparisons with full-likelihood appro-
aches, it has been shown that the estimates are generally
concordant, although the power of the approximate method
tends to be rather lower (e.g. Beaumont et al. 2002; Tallmon
et al. 2004; Excoffier et al. 2005). Unlike NCPA, the coverage
(the adherence to some expected false-positive rate) is
generally good, although often rather conservative (e.g.

Tallmon et al. 2004; Hamilton et al. 2005; Excoffier et al. 2005).
However, in contrast to standard likelihood methods, there
is no underlying theory, and thus, the properties of likelihood-
free approaches have to be examined on a case-by-case
basis.

An advantage of these methods is that it is possible to
address highly parameterized models, potentially providing
inferences of similar detail to those that are claimed for
network-based techniques. A further advantage is that the
relative likelihoods, or posterior probabilities of different
models can be compared, for instance, the various scenarios
that have been proposed for recent human demography
(Fagundes et al. 2007). Additionally, they have been used
to compare different invasion scenarios for economically
important pests (Estoup et al. 2004; Miller et al. 2005), and to
infer the demographic history of populations from ancient
DNA (Chan et al. 2006). With the potential to have very
complex models, there is always the question whether the
data can support such complexity. Certainly, there are reasons
for believing that a number of different demographic
histories will give rise to genealogies of a similar structure
(Wakeley 2004), as discussed in more detail in the next
section. However, it will always be possible to use the
simpler models as a baseline against which to compare
more complex models.

PAC methods

Another, recent and less well-used approximation has been
called the product of approximating conditionals (PAC)
approach (Li & Stephens 2003). This can be explained by
reference to the Ewens sampling formula discussed above.
It is possible to derive this formula by considering the
following procedure. A gene is chosen at random, and we
note its type. We then choose another gene at random, and
ask what is the probability of getting a gene that is the same
or a different type, conditional on the type we have at the
moment. This is repeated until the full sample size is
achieved, at each stage asking what is the probability of
getting a gene that corresponds to a particular type in the
sample, or is of another type, conditional on the data already
in hand. The product of all these probabilities, multiplied
by a constant that is equal to the number of different
ways of getting the same sample by this sequential approach,
is equal to the Ewens sampling formula (Ewens 1972;
see Durrett 2008; also http://www.math.leidenuniv.nl/
~verduyn/djb_notes.ps for a useful review). A similar
procedure can be used to obtain the finite-allele equivalent
(commonly used for modelling population structure:
Balding & Nichols 1995 Beaumont & Balding 2004).
Interestingly, this probability does not depend on the order
that the genes are chosen. However the formula can only
be applied exactly for these two special kinds of model. Li
& Stephens (2003) proposed to apply a result in Stephens &

http://www.math.leidenuniv.nl/~verduyn/djb_notes.ps
http://www.math.leidenuniv.nl/~verduyn/djb_notes.ps
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Donnelly (2000), who used coalescent theory to derive an
approximate formula for the probability of obtaining a
gene of a particular type, given the data in hand. Originally,
this formula was employed to provide an efficient way
of sampling genealogies given the data. Because it is an
approximation, when it is used to provide the likelihood
directly — that is, to get an equivalent of the Ewens
sampling formula — it no longer has the property of giving
a probability that is independent of the order in which the
genes are chosen (at least for sample sizes greater than two,
where it is exact for all mutation models). What can be
done in practice is to average the probability over a number
of different sequences of draws. For microsatellites under
a model of constant population size, evolving according to
the stepwise mutation model, the computed approximate
probability is indistinguishable from estimates obtained
by importance sampling, and much quicker to obtain
(Cornuet & Beaumont 2007). The original application was
for recombining markers (Li & Stephens 2003), but there is
scope for the PAC method to be widely used for different
genetic markers and complex demographic models.

Composite likelihood methods

Composite likelihood methods are often used in population
genetics when data, typically SNP genotyping or DNA
sequencing data, have been obtained from many loci. A
so-called composite likelihood function is formed by
calculating the likelihood in individual nucleotide sites,
or pairs of sites, and then taking the product of these
likelihood functions (e.g. Nielsen 2000; Hudson 2001;
Wooding & Rogers 2002; Polanski & Kimmel 2003; Adams
& Hudson 2004; Marth et al. 2004; Williamson et al. 2005).
The resulting function is not a likelihood function because
the data are not independent due to linkage disequilibrium.
However, estimation of demographic parameters is still
possible, and there are some theoretical results, which
suggest that these methods may have desirable statistical
properties such as consistency (Fearnhead 2003; Wiuf 2006).
Computationally, these methods are useful because they
can be very fast and the computational time does not
rapidly increase with the number of nucleotide sites
sequenced. They form the background for one of the highly
used methods for estimating recombination rates (Hudson
2001; McVean et al. 2002) and have also been employed to
estimate divergence times, migration rates, and population
growth rates (e.g. Nielsen 2000; Wooding & Rogers 2002;
Polanski & Kimmel 2003; Adams & Hudson 2004; Marth
et al. 2004; Williamson et al. 2005). The disadvantage of
these methods is that they do not take advantage of
haplotype structure, leading to a loss of information. Also,
as the composite likelihood function is not a true likelihood
function, confidence intervals and hypothesis testing must
be performed using simulations.

Challenges to coalescent-based methods

Despite the clear benefits in using explicit models and
explicit hypotheses in population genetics, model-based
analyses also face a number of challenges.

Computational issues

Several of the methods discussed here are challenged by
serious computational issues. In many cases, especially for
large genomic data sets, or under very complex models, it
is not possible to calculate the likelihood function even
using simulation techniques. A number of problems are
currently not accessible for analysis. There are no methods
developed for calculating the likelihood function for most
demographic parameter of interest in the presence of
recombination. Even in the absence of recombination,
some of the methods based on the full likelihood face
serious computational challenges. Methods based on
MCMC may not always converge well. It may be difficult
to determine when convergence has been achieved, and in
some cases, if the data sets are sufficiently large, convergence
may not be achieved within a practical amount of time.

The use of approximate methods may lead to a loss of
power, and how much power is lost depends on the details
of the implementation. For example, in the ABC methods,
the summary statistics have to capture as much of the
relevant information as possible, but it can often be difficult
to devise good strategies for selecting statistics. Developing
powerful approximate methods applicable to large data
sets is currently the focus of much research.

Models may be too simple

A clear limitation of any model-based method is that the
model might be wrong. In fact, the real complexity of the
demography of natural populations is unlikely to be
captured by any simple model we could propose. In some
cases, this may not affect inferences much, but in other
cases it will. An example arises when trying to infer
changes of population size in structured populations. It
turns out that population structure very easily can be
confused with changes in the population size. Imagine a
model in which there are multiple different demes, but all
individuals in the sample are obtained from only one
deme. Most of the gene copies in the deme will find a
common ancestor relatively recently, but a few may be
descendents of migrants from other demes. These genes
copies will not find a most recent common ancestor with
the other gene copies in the deme until the lineages
ancestral to the gene copies have migrated into the same
deme and then coalesced. Depending on the number of
demes, their population size, and the migration rate, this
may take a long time. In terms of pairwise differences, most
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will be very small, but a few will be very large. This is
exactly the pattern we would expect to observe if there had
been a strong reduction in population size, or there had
been a bottleneck. Without information about the existence
of other demes, we cannot easily separate the hypothesis of
a change in population size, from the existence of
multiple other unsampled populations.

An example that illustrates this point is presented in
Fig. 6, using the program Msvar by Beaumont (1999). Data
were simulated assuming an island model with FST = 0.2,
and the figure shows the distribution of samples from the
posterior distribution of parameters, obtained using MCMC.
These posterior distributions are obtained from two data
sets — one with five loci, and the other with 10. It can be
seen that with five loci, there is a very broad distribution of
times and growth rates that are compatible with the data.
Strong population growth (the empty ‘hole’ on the right
hand side of the figure), and strong population contraction
(empty hole on the left) are ruled out. However, there is a
ridge with a higher concentration of points for parameter
values giving contraction over timescales (in generations)
in the order of 10 to 100 times the current population size.
With 10 loci, by contrast, there is stronger evidence in
favour of population contraction on a timescale of the

order of the current population size. Thus, with 10 loci, one
would conclude that there had been a population contrac-
tion, or ‘bottleneck’, although the population has maintained
a constant population size.

While this problem is not unique to the method used
here, or to explicit model-based methods in general, it does
suggest that the most naïve interpretation of inferences
based on very simple models should be avoided. Of course,
ideally, the models themselves should be improved. In the
case of the specific example given here, it would be possible
to improve the model to take into account the effect of
population structure using the approach of Wakeley (1999),
provided that geographically separate samples are
available.

No appropriate method available

Several of the methods discussed here are quite laborious to
develop and test. As a consequence, there are a number of
potentially useful models that have not been implemented.
This includes full likelihood-based methods for inference of
complex demography in the presence of recombination and
models which allow both vicariance events and ongoing
gene flow for more many populations at the same time.
Obviously, this is just a practical obstacle that does not
argue against the general use of these methods. However, it
is in many cases a real serious problem for the practical use
of these methods. An advantage of approaches that use
ABC or composite likelihood, is that they easily allow the
construction of inference methods for new scenarios as long
as it is possible to simulate data under these models. The
challenge is then to construct these methods so they are
computationally efficient and maintain reasonable statistical
power and accuracy.

Several of the methods discussed in this review, the full
likelihood-based methods in particular, will face insur-
mountable computational challenges in the face of large-scale
resequencing data. With the drastically reduced price of
DNA sequencing based on next-generation sequencing
technologies, such data is likely to become more and more
common in population genetic studies. Techniques have
been developed for cheaply sequencing just a fraction of a
genome (Margulies et al. 2005; Bentley 2006), even in organ-
isms without any genomic resources available. It is likely
that in the future, most population genetic studies will be
based on this type of cheap large-scale sequencing instead
of microsatellite, mtDNA, restriction fragment length
polymorphism, amplified fragment length polymorphism
or allozyme genotyping. Many of the techniques currently
available for population genetic analysis do not scale up to
the analysis of this type of data. It will be one of the important
challenges in the field of molecular ecology over the next
5–10 years to develop new methods of analysis for this type
of data.

Fig. 6 This figure shows the results of applying the Msvar program
to a data set from one deme in a simulation of 100 demes, where
each immigrant has an equal probability of having come from any
of the other demes. All demes are simulated assuming a constant
population size. The probability, F, that two genes sampled from
the deme share a common ancestor within the deme, without an
intervening migration, is 0.2 (i.e. FST = 0.2, under some definitions).
The Msvar program draws samples from the posterior distribution
of parameter values in a model of population growth, and these
points are plotted in the figure. Here, T is the time over which the
population has changed in size, NA is the ancestral population size,
and NC is the current population size. Ten loci were simulated
(results shown in red), and also the results from a subsample of five
loci is shown. The areas in the plot with more dots are areas with
higher likelihood. It can be seen that by violating the assumption of
a closed population, very strong inferences of population decline
(or a ‘bottleneck’) can be made.
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Conclusion

The field of molecular ecology has benefited greatly by the
tree-thinking introduced by the field of phylogeography.
However, qualitative interpretation of gene trees typically
rely on a series of assumptions that may not always be
justified. To move the field forward, it is necessary to relate
trees to specific models and to take uncertainty in the
estimation of the trees into account. This is the objective of
many of the current efforts in statistical population genetics.
Arguably, the field of phylogeography has developed
tremendously over the past years, allowing more rigorous
inference methods to replace simpler approaches based
solely on tree estimation and informal interpretation.
However, some serious challenges remain in developing
techniques that are computationally faster and allow for
more realistic demographic models. Also, the emerging
availability of large-scale DNA sequencing data sets
produced by next-generation sequencing technologies pose
new problems in statistical population genetics.
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