Spatial analysis of genetic diversity as a tool for plant conservation

Adrián Escuderoa,*, José M. Iriondob, M. Elena Torresb

aArea de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos. C/ Tulipán s/n, E-28933 Móstoles, Spain
bDepartamento de Biología Vegetal, Universidad Politécnica de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain

Abstract

Development of suitable approaches to the analysis of genetic diversity in a spatial context, where factors such as pollination, seed dispersal, breeding system, habitat heterogeneity and human influence are appropriately integrated, can provide new insights in the understanding of the mechanisms of maintenance and dynamics of populations. In this sense, it is important to recognise that patterns and processes may take place at different scales at the same time, and that the scales of a study must be chosen in accordance with the objectives pursued. Apart from conventional approaches to genetic structure, spatial autocorrelation and related techniques, such as Mantel test, correlograms, Mantel correlograms, join-counts, variograms and point pattern analysis, can detect and characterise the existence of spatial genetic structures and lead the way to discussing the environmental and biological factors responsible for them. An alternative way of including spatial variability in modelling approaches that deal with genetic patterns or processes is through the use of constrained ordinations. Although scarcely used at present, these methodologies have great applicability in conservation biology and can lead a way to an effective integration of genetic, demographic and ecological perspectives.

\copyright 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Spatial autocorrelation; Correlograms; Variograms; Point pattern analysis; Constrained ordinations

1. Introduction

During the last few decades we have witnessed an intense academic debate between plant conservation biologists about which is the most appropriate way to approach a conservation problem—the so called ecological or the genetic approach (Schemske et al., 1994). In the course of this long debate, several authors have pointed out that not only is knowledge of the amount of genetic diversity critical for a correct diagnosis of the status, threats and viability of populations (Frankham, 1995), but also the spatial distribution of this diversity (Falk and Holsinger, 1991; Dunham et al., 1999). This recognition falls within a more general statement in which geneticists have recognized the importance of the interaction between genome and environment in time and space as to better understand evolution (Berry, 1989), thus connecting genetics and ecology (Jelinski, 1997). Genetic diversity may appear spatially structured at different scales, such as population, subpopulation or among neighbouring individuals. This spatial distribution is necessarily a product of environmental influences, including human activities (Knowles et al., 1992), life story traits and demographic past history of the plant species (Loveless and Hamrick, 1984; Slatkin, 1985). Thus, knowledge of spatial genetic structures provides a valuable tool for inferring these causal factors and also the underlying genetic processes such as differential selective pressures, gene flow and drift (Nevo et al., 1986; Barbujani, 1987; Epperson 1993; Bjornstad et al., 1995). Consequently, information about dispersal, pollinator behaviour, breeding system, safe site availability for establishment and other processes operating and structuring populations at such scales can be derived from spatially explicit approaches (Peakall and Beattie, 1995). Knowledge of all these features represents a key priority for conservation managers. Surprisingly, however, most genetic studies on endangered plants either lack explicit spatial considerations or analyse them only at scales where biological interpretations at the population level are not straightforward.

Although there is considerable agreement that there is no single “correct” scale at which to describe populations, since the processes that originate the spatial patterns may operate at different scales (Levin, 1992), most
of the available numerical methods used in population genetics have been applied at medium and large scales (population or larger geographical approaches). The spatial association of environmental and genetic variables (Hedrick, 1986) and the spatial patterning of plant genetic diversity (Heywood, 1991) have been extensively studied at these medium or large scales. However, abundant evidence has been reported in which plant populations exhibit genetic micro-differentiation, spatially closer individuals being genetically more alike than individuals at some distance (Sokal et al., 1989; Epperson 1993). Even at extremely fine scales, spatial genetic structures have been detected in some plant populations (Turkington and Harper, 1979; Epperson and Clegg, 1986; Wagner et al., 1991; Tani et al., 1998), although, in other cases, random or near random distributions have been found (Waser, 1987; Epperson and Allard, 1989; Leonardi et al., 1995). Therefore, the challenge that arises when studying the genetic structure of populations of rare plants is not only choosing the scale of description, but rather recognising that change may be taking place at several scales at the same time (McCue et al., 1996).

There is an urgent need to integrate the knowledge derived from genetic, demographic and ecological approaches to species conservation in order to be able to formulate management strategies that take into account all the different considerations. Spatial analysis techniques are a meeting point for all these three approaches and thereby progress on this direction is likely to facilitate a much sought comprehensive and integrated outlook in conservation biology.

2. Objectives

The purpose of this work is to present methods that can be applied to the study of spatial genetic structures in endangered plants, both at broad and narrow scales, and that may be helpful in interpreting key biological processes which affect the viability of the populations. A second matter which is also posed is the treatment of genetic spatial variability in the context of hypothesis testing and its use as a tool in conservation biology.

Traditionally genetic concerns have been put on one side when developing conservation strategies or are included as vague rules of thumb in recovery plans that usually have not been satisfactorily tested (Fleishman et al., 2001). Nowadays, we are realising that empirical assessment of genetic variability is essential for a successful management of endangered plants (Fenster and Dudash, 1994; Knapp and Rice, 1996). Some of the specific issues in which spatial genetic knowledge may be crucial for plant conservation are the improvement of sampling strategies for seed stocks—ex situ conservation—and for decision-making on which populations should be protected or about the area size necessary for the conservation of a particular population (Maki and Yahara, 1997; Chung et al., 1998). Other aspects that can be added to this list are the development of viable strategies for the establishment of corridor populations, the reintroduction of extirpated populations or the foundation of new ones (Pavlík et al., 1993; Helenurm and Parsons, 1997), the design and development of breeding programs (inbreeding versus outbreeding depression balance) (Williams and Harwick, 1996) or, finally, the evaluation of the implications of habitat fragmentation scenarios for species conservation (Young and Brown, 1996).

We do not intend to go too deeply into the debate about the capability of spatial analysis techniques to infer processes in population genetics (see Slatkin and Arter, 1991) but are interested in their value as management tools in plant conservation. In this sense, these authors recognised the interest of such type of techniques in exploratory analysis that can be useful in suggesting hypotheses which can be furtherly tested. Furthermore, spatial analysis techniques, such as autocorrelation methods, may be useful to draw inferences about underlying genetic processes of interest in conservation such as migration, dispersal, drift or mutation (Epperson, 1993; Sokal et al., 1997). Thus, Hardy and Vekemans (1999), exploring the gap between spatial autocorrelation analysis and population genetics models, have concluded that some autocorrelation statistics can be easily predicted from analytical theory.

In spite of the relevance of spatial analysis techniques, some limitations exist at present that are linked to the nature of molecular markers. Molecular markers are considered to provide essentially neutral genetic variation (Avise, 1994). Therefore, spatial genetic structures obtained from the genetic variation of molecular markers will only reflect isolation by distance processes and, since the markers are not affected by natural selection, will have no relation to spatial environmental heterogeneity.

The assumption underlying the use of molecular markers is that their levels and distribution of genetic variation are well correlated with the levels and distribution of variation for loci affecting traits of future adaptive importance. However, there are theoretical reasons for believing that this correlation does not always exist (Ennos et al., 1997). While some conservationists may be inclined to preserve all kinds of genetic diversity, others believe that only adaptive variation is worth the effort (see Heywood, 1991, Slatkin and Arter, 1991), and, thus, that conservation oriented genetic studies should only concentrate in the analysis of adaptive traits (Heywood, pers. commun.). Nevertheless, neutral variation may be used to infer geneflow which ultimately underlie any natural selection event (Hardy and Vekemans, 1999). Moreover, conservation
3. Conventional approaches to genetic structure

Traditionally, population genetic structures within a species have been primarily studied by testing departures of allele frequencies from panmictic expectations or testing for heterogeneity in allele frequencies among populations or other spatial subdivisions (Heywood, 1991). This implies that the genetic information at the individual level is necessarily merged into clusters of a different spatial or biological nature (populations, sub-populations...) and that the relative frequencies are calculated before further analyses such as G-test, \(\chi^2 \) test, or more accurately, exact tests (Goudet et al., 1996), are performed. In this sense, Loikart and England (1999) present a summary of recent statistical methods and computer programs for analysing allele frequency data and for estimating genetic processes such as effective population size, inbreeding, dispersal, migration and even relatedness and parentage.

The construction of hierarchical models based on the pioneer work of Wright (1943) and further developed by Weir and Cockerman (1984), in which the genetic variance is assigned to different levels, constituted a notable improvement in this field. The Analysis of Molecular Variance (AMOVA) procedure developed by Excoffier et al. (1992) provided a method for such a type of analysis that can be easily implemented from inter-individual genetic distance matrices. These last techniques have provided plant conservationists with an efficient and flexible tool to explore a wide range of hypothesised genetic population structures. Other related approaches have used diversity statistics, some of them widely used in other scientific contexts such as the Shannon’s index and others specifically developed in the context of genetic research such as Nei’s (1973), to estimate diversity present within and among populations. An extension of these approaches based on similarity matrices has been the use of clustering techniques, mainly SAHN (Sequential Agglomerative Hierarchical and Non-overlapping) algorithms such as UPGMA (see Podani, 1989, for details). When the spatial units are not conspicuous (i.e. continuous populations), numerous methods have been carried out to study the spatial patterns of variation (Schaal, 1975; Knowles and Grant, 1985; Van Damme, 1986) but always limited by the arbitrary selection of the sampling size and shape (Epperson and Clegg, 1986).

Although all these techniques give valuable information about the structure of genetic diversity, they do not provide information below the size of the smaller subdivision, so that lower scales cannot be explored. Neither do they account for the presence of spatial autocorrelation of the genetic structure, nor shed any light about the directionality and shape of the spatial relationships (Heywood, 1991). We will focus our review on techniques that can explore such scales—even the individual to individual scale—reveal shape and size of the spatial structures and, primarily have a potential value in the context of plant conservation biology. This implies that the above-mentioned array of techniques that provide information on the genetic structure has been deliberately excluded.

4. Molecular markers and nature of genetic data

A wide choice of genetic markers is now available to the conservation biologist (see review by Haig, 1998). Since the 1960s, allozymes have been successfully used to characterise genetic diversity of rare plant species (Hamrick and Godt, 1990), although sometimes they have not shown enough discriminatory power to distinguish between individuals (Brauner et al., 1992; Buso et al., 1998). In the past decade, DNA techniques have gained ground, especially those based on the polymerase chain reaction (PCR) such as microsatellites (or SSR), RAPD, ISSR and AFLP, in part because these molecular markers provide a larger number of potentially polymorphic loci than allozymes (Heun et al., 1994). Furthermore, they also require small amounts of tissue, an aspect which is especially interesting in plant conservation where the least destructive technique should be considered (Rossetto et al., 1995).

Each of these molecular markers exhibits different properties, but for the purpose of this review two major classes can be identified, based upon the type of expression: codominant markers and dominant markers. The information that may be extracted from them, and therefore, the numerical tools employed in each case are necessarily different. Allozymes and SSRs are codominant markers. This means that the two alleles present in a particular locus of a diploid organism are usually identifiable, and that heterozygotes can be distinguished from homozygotes, which is a prerequisite for estimation of allele frequencies in population genetic studies. Thus, these markers provide interval data (i.e. quantitative data such as allele frequency or genetic distances) and nominal data (i.e. qualitative data such as genotypes or alleles). When spatial genetic approaches are explored at the individual to individual scale, genotypic data are used. Usually, spatial analyses are conducted
on independent diallelic loci and the diploid genotype at each location is converted into the values 0, 0.5 and 1 according to the frequency (none, one, two) of a particular allele. Phenetic analyses of individuals using binary data from allozymes or microsatellites can be also undertaken (Ayres and Ryan, 1999) so that construction of genetic distance matrices or use of raw data for further analyses is feasible in both cases. When the spatial approach is at a larger scale, allele frequencies are used.

In contrast, RAPD, ISSR and AFLP segregate as dominant markers, and must be treated as phenotypic characters (presence/absence data). In this case, genetic matrices, composed of “1s” and “0s”, are used where each row shows the data of a particular individual and each column shows the presence or absence of a particular band. These data are usually converted into similarity matrices for calculation of genetic distances. They can also be explored using summary measures, which has the advantage that only a reduced number of statistics are necessary (Bertorelle and Barbujani, 1995) but the clear disadvantage that they can only rarely be related to very informative genetic coefficients (Epperson et al., 1999). Allele frequencies can also be indirectly estimated from these markers and results can be used to obtain the classical parameters of population genetic studies. Nevertheless, in order to do this, several assumptions must be made that do not always coincide with reality (Lynch and Milligan, 1994).

5. Measuring spatial autocorrelation of genetic data

Genetic data frequently present spatial autocorrelation, that is, the association of values of one geographically distributed variable with the values of the same variable at all other localities. In these cases, it is possible to predict the values of a genetic variable at some points of the space from the known values of the variable at other known sampling points.

5.1. Mantel test

The first approach, and probably the most widely used, to find a relationship between genetic data and space is the Mantel test (1967). This method requires two data matrices, a genetic distance matrix which can be obtained from allozymes or DNA products, and a Euclidean distance matrix which computes the distance between any two experimental units, from populations to individuals. This implies the measurement of the spatial coordinates (northing, easting and altitude) at every experimental unit. The Mantel test takes into account the correlation between these two distance matrices (Fortin and Gurevitch, 1993; Legendre and Legendre, 1998). The normalised Mantel statistic (r_M) is interpreted as a Pearson correlation coefficient varying between -1 and 1, and tested by means of a randomisation procedure of rows and columns in one of the two matrices. For instance, Martin et al. (1999) observed that geographical distance partially explained the genetic distance among populations in threatened narrow endemic Erodium paularense.

The main limitation of this technique in plant population genetics is that this test is only sensitive to linear relationships of spatial autocorrelation (Heywood, 1991). Ways round this constraint are the use of non-Euclidean metric distances (Heywood, 1991) or the transformation of data, such as ranking (Legendre and Legendre, 1998). For instance, McCue et al. (1996), working with the rare plant Clarkia springvillensis, evaluated the relationship between genetic distances and spatial distances among subpopulations by means of non-parametric Kendall’s and Sparman’s correlation tests as a way to overcome the above-listed difficulties.

5.2. Correlograms

Spatial genetic structures can be more efficiently described by spatial autocorrelation analysis (Sokal and Oden, 1978). This technique overcomes the limitations of Mantel’s test and has the advantage of not having previous assumptions about the spatial scale of the structure (Heywood, 1991). Spatial autocorrelation coefficients indicate whether the values of a variable influence each other and measure the strength of their association. Population geneticists have preferably accessed this technique using Moran’s I (1950) statistic, although other autocorrelation coefficients such as Geary’s c (1954) or the coefficient of coancestry (Cockerham, 1969) have also been applied (see Appendix). Moran’s I is usually evaluated under the assumption that the observations were random, independent samples of a population with an unknown distribution function. I values which are significantly greater than expected, occur when pairs within a distance class have scores more similar than it would be expected if the variable were randomly distributed. Conversely, values significantly lower than expected indicate that scores of the variable are more dissimilar than expected by chance. Results are usually shown as correlograms, graphic displays in which the values of the autocorrelation coefficients are plotted against distance classes. Tests of significance are obtained for each distance class by randomisation processes, whereas overall significance of correlogram is modified by correction methods, such as the rather conservative Bonferroni method ($P < 0.05/k$, where k is the number of considered lags) or Holm’s method which is more permissive because it is sequential (Legendre and Legendre, 1998).

Surface pattern analysis techniques such as spatial autocorrelation coefficients require interval data.
because they have been developed to study spatially continuous phenomena (Legendre and Fortin, 1989). The most frequent modelled variable arises when information for diallelic loci is computed as “0”, “0.5” or “1” values at each individual point at the individual to individual scale. Other alternatives at larger scales are simply allele frequencies or the number of alleles in common (Boshier et al., 1995). The problem arises when numerous loci are simultaneously tested because many times discrepancies are notorious as the spatial structure across loci is rarely consistent (Smouse and Peakall, 1999). The different patterns obtained from different loci may be due to sampling errors and stochastic processes in the population or because different forces may be acting on different loci (Slatkin and Arter, 1991). To summarise the information provided by all the loci and deal with the discrepancies among spatial structures among loci, mean correlograms can be calculated using the mean value of Moran’s I over all loci, for each distance class (e.g. Bacilieri et al., 1994; Williams, 1994; Gömöry and Paule, 2001a,b). Smouse and Peakall (1999) proposed another method to deal with codominant markers that overcomes these difficulties. This method is conceptually similar to a Mantel correlogram. The multivariate Mantel test (or Mantel correlogram) is an ingenious procedure to compute a correlogram for multivariate data using the normalised Mantel statistic (r_M) and a permutation test for significance (see Oden and Sokal, 1986; Legendre and Legendre, 1998 for details). It is essentially a modification of the Mantel test where distance is divided into categories and it is tested whether the degree of autocorrelation exhibited by pairwise values within each category is greater than or less than the overall average autocorrelation between sites. The interest of these techniques is the capability to test multidimensional data for the departure from spatial independence both in its totality and for each lag class. Although scarcely used, they have shown powerful potentialities in population genetics (Bjornstad et al., 1995; Smouse and Peakall, 1999). A much simpler alternative is the use of the so-called genetic distogram which is a graph where mean genetic distances between pairs of individual belonging to a distance class are plotted against distance classes (Degen and Scholz, 1998; Degen et al., 2001). Statistical significance of such a distogram can be tested using permutation tests.

An alternative and promising way of dealing with multivariate data when using RAPDs or other dominant markers, or if allozyme variability is condensed into a distance genetic matrix, is to summarise the variability of genetic matrices by means of ordinations and to consider the value of each individual on the first extracted gradient as the variable of interest. Thus, the above-mentioned methods that deal with univariate data can be applied. Similar approaches of summing up spatial pattern of complex data sets, based on ordination techniques, have been conducted by other authors (Nesbitt et al., 1995; Le Corre et al., 1998). Such summary techniques reduce the stochastic allele-to-allele and locus-to-locus noise of other approaches.

The use of the Mantel correlogram in the endangered snapdragon Antirrhinum microphyllum played a key role in interpreting the existence of patchy genetic structures in the studied populations (Fig. 1). Usually, the first x-intercept in the correlogram has been used as an estimate of the diameter of the patch. According to this, the size of the patch at the Bolarque population in A. microphyllum would be around 25 m. The estimation of the average size of genetic patches can be helpful in designing seed collection strategies for ex situ conservation. For instance, Chung et al. (1998), working on threatened populations of Cymbidium goeringii, recommended that the sampling of seeds could be conducted at 14–16 m intervals in order to optimise the genetic diversity in collected samples. This suggestion was based in the estimation of the genetic patch obtained from

Fig. 1. Mantel correlogram of *Antirrhinum microphyllum* plants at Bolarque population obtained from RAPD data. Filled squares represent autocorrelation coefficients of the Mantel statistic that are significantly different from their expected value ($P<0.05$) (Torres, unpublished data).
Moran’s I correlograms. Furthermore, as observed by He et al. (2000) in the endangered perennial Ophiopogon xylorrhizus in tropical rainforest, knowledge about the existence of a patchy genetic structure in a population implies that the population should be protected in situ as a whole. Since the population is not homogeneous, the conservation of part of the population would not guarantee the preservation of a representative sample of existing genetic diversity, as genotype distribution can greatly vary between patches.

Recent studies of genetic structure in plant populations have addressed differences in spatial distribution of genetic variation at various life stages or age classes and in different microenvironments of a particular population. This way of integrating genetics, demography and environment provides relevant information on how environment, mating system, seed dispersal and selection can interact. In Neolitsea sericea, Chung et al. (2000) found homogeneity of genetic structure among the five age classes considered. This suggests that reproductive events at the population were highly similar from year to year in genetic terms. Contrastingly, in Cecropia obtusifolia, seedlings showed marked microspatial structure (spaced out on a cm×cm scale), but spatial structure declined among saplings (spaced out on a m×m scale), and was absent among adults (spaced tens of metres apart) (Epperson and Alvarez-Builla, 1997). Significant changes in genetic structure between life-cycle stages may provide evidence for population-wide selection based on degree of inbreeding, although it may also result from selection for or against more distantly dispersed offspring. Thus, this information might be useful in the design of population introductions. Furthermore, the effects of ongoing habitat fragmentation in populations can also be analysed through this approach.

A different methodological approach, which has also been used, is the use of joint count autocorrelation statistics that allow the use of nominal data (Sokal and Oden, 1978). In this case, the observed number of “like pairs” of genotypes, in which both individuals of a pair share the same genotype, are enumerated. These numbers are compared with expected numbers under the null hypothesis of a random distribution of genotypes. Autocorrelation statistics are usually computed as Standard Normal Deviates (SND) (Sokal and Oden, 1978). A significant positive value indicates that the pairs of individuals separated by the corresponding distance (lag interval) have more similar genotypes than expected by the null hypothesis, whereas a significant negative value indicates that they have dissimilar genotypes. According to Epperson et al. (1995) joint counts statistics for pairs are more sensitive than Moran’s I statistic based on allele frequencies. He et al. (2000) used join counts to show that plant populations of Ophiopogon xylorrhizus were subdivided in local neighbourhoods of related individuals. These authors suggested that in this case limited gene flow due to short-distance dispersal of pollen and seed might account for the genetic clustering. This suggestion was backed by the nature of pollinators and the features of the species’ seed dispersal.

Another useful application of spatial autocorrelation analysis is the assessment of the relative importance, in genetic and demographic terms, of clonal and sexual reproduction in species that both have alternative ways of propagation. Thus, both join-counts and Moran’s I statistics have been used to separate the spatial genetic structure caused by clonal reproduction from that maintained in sexually reproduced individuals in populations of the endangered Abeliophyllum distichum (Chung and Chung, 1999) and the narrowly distributed Adenophora grandiflora (Chung and Epperson, 1999).

An important issue in all the above-mentioned techniques is the determination of the number and size of the distance intervals to be used. A recommended and classical rule of thumb to determine the range of the study is to consider only pairs separated by less than half the maximum distance observed (Le Corre et al., 1998). There is no consensus regarding the way of generating distance classes. Some authors suggest the use of uneven lags that comprise a constant number of individuals (equal frequencies), whereas others prefer using the same distance in all lags irrespective of the number of point pairs that fall in each class (equal intervals) (see Appendix). Under either of these criteria, each lag class should include at least 30 pairs of data (Legendre and Fortin, 1989). The first distance class is particularly critical, and Epperson and Chung (2001) recommended the establishment of its upper bound to be approximately equal to 1.5 times the square root of the inverse of the sample density. According to them, such a bound would insure that most pairs of near-neighbour individuals are included in distance class one. Following with other technical aspects, Rossi et al. (1992) have pointed out the importance of detecting outliers, because just one unusually large or small value may strongly influence the results. Hawkins’s method (1980) provides an efficient tool for this purpose.

To compute spatial autocorrelation techniques, we may need to indicate connections among the localities because the use of raw spatial components may not always be straightforward. Under these circumstances, the Gabriel connected graph (Gabriel and Sokal, 1969), which is used to test for the lack of autocorrelation between nearest neighbours, has been the most used technique in population genetics (e.g. Dewey and Heywood, 1988; Schnabel et al., 1991; He et al., 2000). This algorithm pairs two individuals if no other individual lies on or within the circle whose diameter is the line connecting those individuals. Our experience suggests that the use of geographical distances is normally the best option. Only, when environmental constraints for
seed dispersal or pollination vectors are clearly identifiable (i.e. linear habitats, such as rivers or roads) the construction of connection graphs may be of interest.

5.3. Variograms

A semi-variogram (often called a variogram for simplicity) is a graph which shows the average semi-variance found in comparisons of samples (i.e. individuals) taken at increasing distances from one another, the lag interval (Legendre and Fortin, 1989). The underlying assumption, called the “intrinsic hypothesis” is that the difference between the values of two individuals is only a function of the distance between the points. This is a bit more flexible condition that the second order stationarity—existence of a dominant spatial structure—that is necessary to build up most of the known structure functions. As in the case of correlograms, variograms may be calculated for all directions in space, or for specific directions if anisotropy is suspected. In this case, only the pairs of points connected along a given direction are considered—taking a tolerance angle into consideration. The main interest of this technique is that theoretical variograms can be fitted to experimental ones, allowing for the comparison of observed structures with structures derived from hypothesised generating processes. Many models are available to conduct this adjustment, such as linear, Gaussian, exponential or spherical models and there are systems to evaluate their goodness of fit (Pannatier, 1996; Legendre and Legendre, 1998). Parameters of some of these theoretical variograms such as the range, which is the distance where the semi-variance stops increasing, or the sill, which is the ordinate value of the flat zone of the variogram, present undoubted interest in genetic conservation sense. For instance, these models may be used as a predictive tool for kriging contour maps (Burrough, 1987; Degen and Scholz, 1998) or variograms having a clear sill can be interpreted within the frame of isolation by distance models. According to these models, after a critical distance, little change in the semi-variance is encountered with increasing distances, so the total sample semi-variance found at all scales of sampling is essentially constant (Piazza et al., 1981; Rossi et al., 1992; Le Corre et al., 1998). Among the papers reviewed, only two used this technique (see Appendix). In Le Corre et al. (1998), allozymes were used and variograms were independently calculated for allele frequencies from different loci, so we again face the problem of interpreting divergent results. In Fig. 2, the results of a variogram approach on A. microphyllum in which the RAPDs variability was summarised by means of a PCA are shown. The first component was used to build up the variogram (Torres, 1999). Note that the results obtained are rather similar to those from Mantel correlogram (Fig. 1) (the graphs mirror each other because variograms plot semi-variances and correlograms plot correlation coefficients).

Because the shape of structure functions may not unambiguously correspond to a single type of spatial structure they must be completed with maps of the original variable or if possible, the theoretical model (Legendre, 1993). Consequently, along with the variogram patterns, we suggest the construction of contour plots of the consensus genetic variable by means of an interpolation procedure to characterise the pattern of the genetic structure. In A. microphyllum the interpolation map of the population clearly shows a patchy pattern with a reduced number of genetic vicinity units (Fig. 3). This patchy spatial genetic structure can be explained by a combined effect of short-distance pollen and seed dispersal, and by the existence of a patchy spatial structure of available safe sites for the establishment of this species, a chasmophyte.

Fig. 2. Variogram for Antirrhinum microphyllum plants at Bolarque population. The first extracted component of a PCA obtained from RAPD data was used to build the variogram (Torres, unpublished data).
5.4. Point pattern analysis

Point pattern analysis is a complete battery of methods to establish whether the distribution of data points is random, that can be applied to model the spatial pattern of a particular genotype. Surprisingly, the use of point pattern analysis has not been implemented in population genetics nor in conservation biology, despite some indexes based on counts and specifically developed to evaluate spatial patterns having been used in these contexts, such as the Morisita index (Ueno et al., 2000). The development of density functions using the second moment, i.e. the variance of all point–point distances, offers a powerful analytical tool for the study of distribution patterns (Diggle, 1983; Haase, 1995). Probably the most interesting methods are those based on Ripley’s (1976) K-function, which is being widely used in plant ecology. The function is calculated from the data and then tested against the null hypothesis of complete spatial randomness. Usually the statistical significance is based on Monte Carlo methods. Univariate and bivariate approaches are feasible. In the latter case, the repulsion or aggregation of different genotypes for any distance from a target individual can be studied for any known radius around the individual. Recently, Podani and Czárán (1997) have developed a multivariate approach in a vegetation context which seems to be largely applicable to population genetics.

6. Hypothesis testing and partialling out spatial information

Theoretical and empirical work is rapidly advancing a set of hypothesis tests that use spatial patterns to study some genetic processes such as gene flow or natural selection (Epperson, 1990). The evaluation of the effect of environmental conditions on spatial genetic structure can be viewed as a problem of spatial covariation (Legendre and Fortin, 1989). This type of covariation can efficiently be approached by means of constrained ordinations considering the spatial location of each individual as a variable upon which statistical analyses are performed. As suggested by McCune (1997), these techniques (ter Braak, 1986; ter Braak and Prentice, 1988) can be used as tools for hypothesis testing (ter Braak and Prentice, 1988; Palmer, 1993; Legendre and Anderson, 1999). Genetic distance matrices, such as those obtained from allozyme or RAPD data, constitute the target genetic matrix.

In order to select the appropriate ordination constraining technique, the target genetic matrix must be submitted to a Detrended Correspondence Analysis (DCA) with detrending by segments and non-linear rescaling of the axes, which has the property that the extracted axes are scaled in units of average standard deviation (Gauch, 1982). Values above 3 SD units suggest the use of techniques assuming unimodal responses such as Canonical Correspondence Analysis (CCA) or other related techniques (ter Braak, 1986; Legendre and Anderson, 1999). Linear techniques such as those related to redundancy analysis should be conducted when the extracted gradient is smaller. Both spatial variables (northing, easting and altitude) and other explanatory sets (i.e. environmental variables) can be used to constrain the genetic matrix. Total Variation Explained (TVE) by each data set can be calculated as the sum of all canonical extracted axes (Borcard et al., 1992). A Monte Carlo permutation test is performed to determine the accuracy of the relationship. The sum of all canonical eigenvalues or trace is used to build the F-ratio statistic (ter Braak, 1990; Verdonchot and ter Braak, 1994; Legendre and Anderson, 1999). Bonferroni correction is usually used after multiple comparisons (Legendre and Legendre, 1998).

A forward step is achieved by means of partial constraining ordinations (ter Braak, 1987). These proce-
dures evaluate the relative importance of any con-
straining matrix (spatial, environmental...) after
adjusting the variability of other data sets which are
considered as covariables (Borcard et al., 1992; Borcard
and Legendre, 1994; Okland and Eilertsen, 1994;
Legendre and Legendre, 1998). Partial ordinations
allow one to determine the variation that can be
explained by the variables that remain after the varia-
tion associated with the covariable data set has been
removed. In this case, the question is not only whether a
correspondence between the data sets exists but, what
fraction of the seed counts information is explained by
the covariable data set and how much by the constrain-
ing matrix.

Epperson (1990) suggested the use of regression
models to account for such a type of hypothesis testing
approaches. However, the difficulties of these methods
in hypothesis testing were summarised by Legendre
(1993). On the other hand, Bjørnstad et al. (1995) sug-
gested the use of a conceptually similar approach, the
so-called Partial Mantel test. Moreover, they proposed
four models of causal relationships between three dif-
ferent data sets (space, genetics and environment).
Thus, they showed that the genetic pattern at the small-
er scales is largely due to spatial constraints, which they
related to isolation by distance, whereas selective forces
(related to environmental variability) may generate the
genetic pattern at larger scales. One of the main restric-
tions of this technique, also recognised by the authors, is
that the relationships among the considered data set are
assumed to be linear. This is worth noting because evi-
dence suggesting other type of relationships between
distance and genetic sets has been reported (Epperson,
1993).

The results of a constrained ordination performed in
Antirrhinum microphyllum are shown in Table 1, where the rele-
ance of the spatial components (including some inter-
action terms) in explaining a fraction of the genetic
variability in a population is assessed. A forward step-
wise procedure was subsequently carried out to select a
reduced model including only significant variables (geo-
graphical in this case). We incorporated explanatory
variables one at a time and step by step in the order of
their decreasing eigenvalues after partialling out the
variation accounted for the already included variables.
The process stopped when the new variable was not
significant ($P > 0.05$). In this case, northing and easting
components were selected as variables that significantly
explained part of the genetic variation in the Bolarque
population of A. microphyllum. Reduced models incor-
porating only these variables implied a very small drop
of TVE. The results obtained are supported by the par-
cular geomorphologic structure of the cliff environ-
ments where the population appears (Torres, 1999).
This approach may be extended in such a way that
environmental, morphological, experimental or
theoretically emerged classifications, and other type of
data sets can be simultaneously evaluated.

7. Past and present applications and future possibilities

Spatial statistical methods provide plant conservation
biologists with powerful tools for measuring the struc-
ture of genetic diversity of target plants. However, a
quick review of current literature shows that the use of
these techniques is low among genetic conservationists
and even among population geneticists. We have
reviewed papers approaching spatial genetic structures
in plant species and limited our search to articles dealing
with spatial autocorrelation and related techniques. The
papers that simply used the Mantel test have not been
considered. The results are shown in the Appendix.
Sixty-one papers were found in which 67 species were
analysed. In only 15 cases the studies referred to rare or
endangered species. Almost all papers (87%) used allo-
zymes to estimate the amount of genetic diversity.
Similarly, most works calculated the Moran’s auto-
correlation coefficient I (77%) and joint count statistics
(15%). There is a very reduced set of papers that have
explored spatial genetic structures by other means, such
as variograms or Mantel correlograms.

Nevertheless, the range of possible practical applica-
tions of these approaches is very large and so an effort
should be made to spread the use of these techniques in
conservation. Although many tools have been proposed
to quantify patterns, their development is far from being
completed (Gustafson, 1998), so future tools will be
necessarily be tested and will probably give new insights
into plant conservation concerns. The potential of den-
sity functions (point pattern analysis) is enormous, so
we predict their wide use among population geneticists
and, especially plant conservationists. The recognition
of univariate patterns of individuals and bivariate pat-
terns comprising different age classes or individuals of
different species, will become of prime interest in
restoration plans for endangered plants. From here, the

<table>
<thead>
<tr>
<th>Population</th>
<th>Variable</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolarque</td>
<td>x</td>
<td>1.79</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>1.50</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td></td>
<td>n.s.</td>
</tr>
</tbody>
</table>

* x is the spatial coordinate in the east–west direction; y is the spa-
tial coordinate in the north–south direction; z is the altitude; F is the
F-ratio statistic and P is the level of significance of the selected vari-
able in the reduced model (1000 randomisations).
spread to other interests of genetic plant conservation is really foreseeable.

The promising value of matrix approaches to partialling out spatial information from genetic data sets needs to be explored. Approaches, like in Bjørnstad et al. (1995), suggest a wide range of possibilities through the use of the partial Mantel test and constrained ordination techniques. Efforts must be done to build efficient theoretical models to constraint the basic genetic information. These models should comprise not only different natural genetic scenarios but also diverse management situations.

Implementation of recovery plans following suggestions from spatial genetic approaches will require monitoring programmes to control the results in terms of total genetic diversity and inbreeding and outbreeding constraints. This experience will enable the formulation of general rules for the management of endangered plants (Pavlik, 1996), Guerant (1996), discussing whether or not founding populations should come from single or multiple sources in restoration projects, clearly points out that arguments in favour or against may be overseeing how genetic diversity appears structured within populations (Huenneke, 1991; Barrett and Kohn, 1991; Holinger and Gottlieb, 1991). Furthermore, outbreeding and inbreeding paradigms of restoration ecology must be revisited in the light of new realities, such as the existence of genetic neighbourhoods at very small scales. These may be responsible for the failure of many reintroduction projects dealing with endangered or rare plants.

There is an urgent need to integrate the knowledge derived from genetic, demographic and ecological approaches to species conservation in order to be able to formulate management strategies that take into account all different considerations. Spatial analysis techniques are a meeting point for all these three approaches and thereby progress on this direction is likely to facilitate a much sought after comprehensive and integrated outlook in conservation biology.

Acknowledgements

We are grateful to J. Heywood and D. Gomóry for their very useful comments and suggestions. This work has been partially financed by REN 2000-0254-P4-03 project of the Spanish Ministry of Science and Technology.

Appendix. Literature survey of spatial genetic studies at within-population level or among-population level

For each species, the molecular marker used, the method of spatial analysis used, the upper bound for the first distance class and the criteria followed to define classes is given. Underlined species correspond to rare or endangered taxa.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Scientific name</th>
<th>Level</th>
<th>Molecular marker</th>
<th>Method</th>
<th>First class (m)</th>
<th>Criteria for defining class boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacilieri et al., 1994</td>
<td>Quercus petraea</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Bacilieri et al., 1994</td>
<td>Quercus robur</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Berg and Hamrick, 1995</td>
<td>Quercus laevis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I, join-counts</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Bjornstad et al., 1995</td>
<td>Poa alpina</td>
<td>Within</td>
<td>Allozymes</td>
<td>Mantel correlogram; partial Mantel test</td>
<td>10</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Bonnin et al., 2001</td>
<td>Medicago truncatula</td>
<td>Within</td>
<td>SSRs</td>
<td>Coancestry coefficient</td>
<td>0.5</td>
<td>EI</td>
</tr>
<tr>
<td>Bouza et al., 2002</td>
<td>Dorycnium spectabile</td>
<td>Within</td>
<td>RAPD</td>
<td>Moran’s I</td>
<td>3/5</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Bouza et al., 2002</td>
<td>Implicis chalcantha</td>
<td>Within</td>
<td>RAPD</td>
<td>Moran’s I</td>
<td>3</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Bucci and Menozzi, 1995</td>
<td>Picea abies</td>
<td>Within</td>
<td>RAPD</td>
<td>Join-counts</td>
<td>28.5</td>
<td>EF</td>
</tr>
<tr>
<td>Caujapé-Castells and Pedrola-Monfort, 1997</td>
<td>Androcymbium gramineum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>2.6/3.9/4.6</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Caujapé-Castells et al., 1999</td>
<td>Androcymbium helian</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>1</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Caujapé-Castells et al., 1999</td>
<td>Androcymbium guttatum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>0.25</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Caujapé-Castells et al., 1999</td>
<td>Androcymbium pulchrum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>0.3/1</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Coates, 1992</td>
<td>Stylium coroniforme</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chung and Chung, 1999b</td>
<td>Abeliophiillium distichum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I, join-counts</td>
<td>4/5</td>
<td>EF</td>
</tr>
<tr>
<td>Chung and Epperson, 1999</td>
<td>Adenophora grandiflora</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I, join-counts</td>
<td>7/8</td>
<td>EF</td>
</tr>
<tr>
<td>Chung and Park, 1998</td>
<td>Hosta capitata</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>2.4/2.9</td>
<td>EF</td>
</tr>
<tr>
<td>Chung and Park, 1998</td>
<td>Hosta minor</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>2.3/2.5</td>
<td>EF</td>
</tr>
<tr>
<td>Chung et al., 1998</td>
<td>Cymbidium goeringii</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>3/4</td>
<td>EF</td>
</tr>
<tr>
<td>Chung et al., 1999a</td>
<td>Rhus trichocarpa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>9/14</td>
<td>EF</td>
</tr>
<tr>
<td>Chung et al., 2000</td>
<td>Neolitsea sericea</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>10</td>
<td>EF</td>
</tr>
<tr>
<td>Dewey and Heywood, 1988</td>
<td>Psychotria nervosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>3.5</td>
<td>EF</td>
</tr>
<tr>
<td>Doliguez and Joly, 1997</td>
<td>Carapa procera</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran’s I</td>
<td>50/100</td>
<td>EI</td>
</tr>
</tbody>
</table>

(continued on next page)
Reference

<table>
<thead>
<tr>
<th>Reference</th>
<th>Scientific name</th>
<th>Level</th>
<th>Molecular marker</th>
<th>Method</th>
<th>First class (m)</th>
<th>Criteria for defining class boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epperson and Allard, 1989</td>
<td>Pinus contorta subsp. latifolia</td>
<td>Within</td>
<td>Allozymes</td>
<td>Join-counts</td>
<td>15</td>
<td>EF</td>
</tr>
<tr>
<td>Epperson and Chung, 2001</td>
<td>Pinus ponderosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>15</td>
<td>EI</td>
</tr>
<tr>
<td>Epperson et al., 2003</td>
<td>Pinus arizonica</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>100</td>
<td>EI</td>
</tr>
<tr>
<td>Epperson et al., 2003</td>
<td>Pinus ponderosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>100</td>
<td>EI</td>
</tr>
<tr>
<td>Fleishman et al., 2001</td>
<td>Cordyline fruticosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Foster and Sork, 1997</td>
<td>Ancestral clades</td>
<td>Within</td>
<td>Allozymes</td>
<td>Coancestry coefficient</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Garnier et al., 2002</td>
<td>Hyparrhenia diplandra</td>
<td>Within</td>
<td>SSRs</td>
<td>Moran's I</td>
<td>0.5</td>
<td>d.b.a.</td>
</tr>
<tr>
<td>Geburek and</td>
<td>Quercus macrocarpa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>5</td>
<td>EI</td>
</tr>
<tr>
<td>Tripp-Knowles, 1994</td>
<td>Actinidia deliciosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>5</td>
<td>EI</td>
</tr>
<tr>
<td>Gömörty et al., 1998</td>
<td>Fagus sylvatica</td>
<td>Among</td>
<td>Allozymes</td>
<td>Varioigram</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gömörty and Paule, 2001a</td>
<td>Alnus glutinosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>70</td>
<td>EI</td>
</tr>
<tr>
<td>Gömörty and Paule, 2001b</td>
<td>Prunus avium</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>36.8</td>
<td>EF</td>
</tr>
<tr>
<td>He et al., 2000</td>
<td>Ophiopogon yezoensis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I, join-counts</td>
<td>5</td>
<td>EI</td>
</tr>
<tr>
<td>Hossain-McKey et al., 1996</td>
<td>Lathyrus sativus</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I, Geary's c</td>
<td>0.5</td>
<td>EF</td>
</tr>
<tr>
<td>Kalisz et al., 2001</td>
<td>Trillium grandiflorum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Coancestry coefficient</td>
<td>0.125/0.25</td>
<td>EI</td>
</tr>
<tr>
<td>Kang and Chung, 1997</td>
<td>Chimonaphila japonica</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>2.5</td>
<td>EF</td>
</tr>
<tr>
<td>Kang and Chung, 1997</td>
<td>Pyrola japonica</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>2</td>
<td>EF</td>
</tr>
<tr>
<td>Kang and Chung, 2000</td>
<td>Hemerocallis hakuensis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>3</td>
<td>EF</td>
</tr>
<tr>
<td>Kang and Chung, 2000</td>
<td>Hemerocallis thunbergii</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>3</td>
<td>EF</td>
</tr>
<tr>
<td>Knowles, 1991</td>
<td>Picea mariana</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>7.5/24</td>
<td>EF</td>
</tr>
<tr>
<td>Knowles et al., 1992</td>
<td>Larix laricina</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>5</td>
<td>EI</td>
</tr>
<tr>
<td>Kudoh and Whigham, 1997</td>
<td>Hibiscus moscheutos</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>3</td>
<td>EI</td>
</tr>
<tr>
<td>Le Corre et al., 1998</td>
<td>Quercus petrea</td>
<td>Among</td>
<td>Allozymes</td>
<td>Variograms</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Loiselle et al., 1995</td>
<td>Psychotria officinalis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Coancestry coefficient</td>
<td>5</td>
<td>EI</td>
</tr>
<tr>
<td>Maki and Masuda, 1993</td>
<td>Chionographis japonica var. japonica</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Maki and Masuda, 1994</td>
<td>Chionographis japonica var. kurohimensis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Maki and Yahara, 1997</td>
<td>Cerastium fischerianum var. molle</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>2.3</td>
<td>EF</td>
</tr>
<tr>
<td>McCue et al., 1996</td>
<td>Clarkia springvillensis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Merzeau et al., 1994</td>
<td>Fagus sylvatica</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I, join-counts</td>
<td>3</td>
<td>EI</td>
</tr>
<tr>
<td>Michaud et al., 1995</td>
<td>Quercus ilex</td>
<td>Among</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>400k</td>
<td>EI</td>
</tr>
<tr>
<td>Montalvo et al., 1997</td>
<td>Quercus chrysolepis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Coancestry coefficient</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Peakall and Beattie, 1995</td>
<td>Scleroidea diacantha</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>3</td>
<td>EI</td>
</tr>
<tr>
<td>Perry and Knowles, 1991</td>
<td>Acer saccharum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>11.8/11.9/17.7</td>
<td>EF</td>
</tr>
<tr>
<td>Pigliucci and Barbujani, 1991</td>
<td>Ornithogalum montanum</td>
<td>Among</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>104.6k</td>
<td>EF</td>
</tr>
<tr>
<td>Reusch et al., 1999</td>
<td>Zostera marina</td>
<td>Within</td>
<td>SSRs</td>
<td>Moran's I, join-counts</td>
<td>3</td>
<td>EI</td>
</tr>
<tr>
<td>Sarthou et al., 2001</td>
<td>Pitcairnia geysklesi</td>
<td>Within</td>
<td>Allozymes</td>
<td>Mantel correlogram</td>
<td>45</td>
<td>EF</td>
</tr>
<tr>
<td>Schnabel and Hamrick, 1990</td>
<td>Gleditsia triacanthos</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Schnabel et al., 1991</td>
<td>Gleditsia triacanthos</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>4</td>
<td>EF</td>
</tr>
<tr>
<td>Schnabel et al., 1991</td>
<td>Maclura pomifera</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>10</td>
<td>EF</td>
</tr>
<tr>
<td>Sharp et al., 1995</td>
<td>Atherosperma moschatum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Join-counts</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Smouse and Peakall, 1999</td>
<td>Caladenia tentaculata</td>
<td>Within</td>
<td>Allozymes</td>
<td>Smouse and Peakall</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Stelhlik and Holderegger, 2000</td>
<td>Anemone nemorosa</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>0.5</td>
<td>EI</td>
</tr>
<tr>
<td>Streiff et al., 1998</td>
<td>Quercus petraea</td>
<td>Within</td>
<td>Allozymes/SSRs</td>
<td>Moran's I</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Streiff et al., 1998</td>
<td>Quercus robur</td>
<td>Within</td>
<td>Allozymes/SSRs</td>
<td>Moran's I</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Torres, 1999</td>
<td>Antirrhinum microphyllum</td>
<td>Within</td>
<td>RAPD</td>
<td>Variogram</td>
<td>15</td>
<td>EI</td>
</tr>
<tr>
<td>Ueno et al., 2000</td>
<td>Camellia japonica</td>
<td>Within</td>
<td>SSRs</td>
<td>Moran's I</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>Waser, 1987</td>
<td>Delphinium nelsonii</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>20</td>
<td>EI</td>
</tr>
<tr>
<td>Williams and Waser, 1999</td>
<td>Delphinium nuttallianum</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Williams, 1994</td>
<td>Cryptotaenia canadensis</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Williams, 1994</td>
<td>Osmorhiza claytonii</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Williams, 1994</td>
<td>Sanicula odorata</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>1</td>
<td>EI</td>
</tr>
<tr>
<td>Xie and Knowles, 1991</td>
<td>Pinus banksiana</td>
<td>Within</td>
<td>Allozymes</td>
<td>Moran's I</td>
<td>9.6/12.1/13</td>
<td>EF</td>
</tr>
</tbody>
</table>

Criteria for defining class boundaries: EF = equal frequencies; EI = equal intervals; d.b.a. = defined by author.
References

