
Regardless of the mechanism controlling

reef-water pH, our results suggest that corals

at Flinders Reef have experienced a relative-

ly wide range in pH (È0.3 pH units) over the

past È300 years. As a result, these corals

have also experienced equivalent changes in

the aragonite saturation state (W
arag

), one of

the main physicochemical controllers of coral

calcification. Changes in W
arag

have been de-

rived from the Flinders pH record (Fig. 2D),

with W
arag

varying from È3 to 4.5, assuming

constant alkalinity (10, 24). This encompasses

the lower and upper limits of W
arag

within

which corals can survive (37). Despite such

marked changes, skeletal extension and calci-

fication rates for the Flinders Reef coral (Fig.

2E) fall within the normal range for Porites

(38) and are not correlated with W
arag

or pH.

Therefore, the Porites coral at Flinders Reef

seems well adapted to relatively large fluc-

tuations in seawater pH and W
arag

.

The interdecadal cycle in seawater pH

observed at Flinders Reef has relevance for

predicting its response to future ocean acidi-

fication, given that it will either enhance or

moderate the local effects of the projected

long-term decrease in pH (3, 4). For exam-

ple, the next rise in the È50-year cycle of

reef-water pH should counteract the lower-

ing of pH values at Flinders Reef until

È2035 A.D. Conversely, the subsequent fall

in the reef-water pH cycle will lead to an

abrupt shift toward low pH reef water. The

extent to which corals and other calcifying

reef organisms can adapt to such rapid de-

creases in pH is largely unknown.

Our findings suggest that the effects of

progressive acidification of the oceans are likely

to differ between coral reefs because reef-water

PCO
2

and consequent changes in seawater pH will

rarely be in equilibrium with the atmosphere.

Although the relatively large variations in

seawater pH at Flinders Reef suggest that coral

reefs may be resilient to the shorter term effects of

ocean acidification, in the coming decades many

reefs are likely to experience reduced pH that is

unprecedented relative to Bnatural[ levels. Addi-

tional paleo-pH records are required from a range

of coral reef ecosystems to improve our

understanding of the physical and biological

controls on reef-water pH, and the long-term

impacts of future ocean acidification.
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Phylogenetic MCMC Algorithms
Are Misleading on Mixtures

of Trees
Elchanan Mossel1 and Eric Vigoda2

Markov chain Monte Carlo (MCMC) algorithms play a critical role in the
Bayesian approach to phylogenetic inference. We present a theoretical analysis
of the rate of convergence of many of the widely used Markov chains. For N
characters generated from a uniform mixture of two trees, we prove that the
Markov chains take an exponentially long (in N) number of iterations to con-
verge to the posterior distribution. Nevertheless, the likelihood plots for sample
runs of the Markov chains deceivingly suggest that the chains converge rapidly
to a unique tree. Our results rely on novel mathematical understanding of the
log-likelihood function on the space of phylogenetic trees. The practical im-
plications of our work are that Bayesian MCMC methods can be misleading
when the data are generated from a mixture of trees. Thus, in cases of data
containing potentially conflicting phylogenetic signals, phylogenetic recon-
struction should be performed separately on each signal.

Bayesian inference is one of the most pop-

ular methods in phylogeny reconstruction (1).

Many widely used software packages, such as

MrBayes (2), BAMBE (3), and PAML (4), rely

on Markov chain Monte Carlo (MCMC) meth-

ods. These algorithms are often known as

BMCMC. Part of the appeal of BMCMC is

that they are supposed to be more robust and

faster than standard maximum likelihood ap-

proaches. Our results show that these appealing

features are overly optimistic in some settings.

The basis of the MCMC algorithms is a

Markov chain whose stationary distribution is

the desired posterior distribution. Reliable

phylogenetic estimates depend on the Markov

chain converging to the posterior distribution
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before any phylogenetic inferences are made.

Typically it is elementary to establish that the

Markov chains eventually converge to the

posterior distribution. However, convergence

after an infinite number of iterations is not of

practical use. The chains need to converge

quickly to the posterior distribution in order to

be considered useful. Unfortunately, it is no-

toriously difficult to rigorously analyze the

convergence rate of the Markov chains used

for phylogeny. In practice, heuristics Esuch as

multiple starting states and convergence of

log-likelihood plots (5)^ are commonly used

to determine when the Markov chains have

converged to the posterior distribution.

The major difficulty in analyzing these Mar-

kov chains is our poor understanding of the ge-

ometry of the space of tree topologies weighted

by the likelihood function (this geometric space is

often referred to as the tree space). Work has

been done on the likelihood function for fixed

trees on three and four leaves (6, 7) Eabstract

properties of tree space on any number of leaves

also have been analyzed (8–11)^.
In our work, we consider N characters gen-

erated from a uniform mixture of two trees on

n Q 5 leaves and show that BMCMC takes an

exponential number of iterations to converge.

Our proofs also yield detailed information on

the geometry of the likelihood function on the

tree space for five or more leaves. It has its

basis in combinatorial analysis techniques

that are further discussed in (12).

The bases of our results are the follow-

ing two trees of five taxa: T
1

is given by

((12),3),(45) in the standard Newick format,

whereas T
2

is given by ((14),3),(25); see the

yellow trees in Fig. 1 for an illustration. Our

results apply to cases where the data are

generated from a uniform mixture of two

trees, (T
1
*,L

1
*

Y

) and (T
2
*,L

2
*

Y

), on n Q 5 leaves,

where for some subset S of leaves, the

subtree of (T1
*,L1

*
Y

) on S is (T1,l1
Y

), and the

subtree of (T
2
*,L

2
*

Y

) on S is (T
2
,l

2

Y
). Moreover,

the branch lengths on subtrees (T
1
,l

1

Y

) and

(T
2
,L

2
*

Y

) must lie in the following zone: The

branch lengths of terminal branches (i.e.,

edges incident to the leaves) are between a

and a2; the branch lengths of internal branches

are between a and 2a; and the number a

satisfies 0 G a G b, where b is some small

positive constant. The assumptions on the

branch lengths of T
1

and T
2

are essential in

the details of the proof.

For each of the trees (T
1
*,L

1
*

Y

) and (T
2
*,L

2
*

Y

),

the character data are generated by using any

of the standard mutation models, such as the

Cavender-Farris-Neyman (CFN) model, the

Jukes-Cantor model, and Kimura_s two pa-

rameter model Esee (13) for an introduction to

these models^. Moreover, our results hold for

almost any prior distribution on branch

lengths used in BMCMC including those dis-

cussed in (14, 15); see (12) for more details.

Our results are valid for two families of

BMCMC. In the first family, the MCMC per-

forms a random walk on the discrete set of tree

topologies. The transition probabilities are

determined by the Metropolis rule (16) using

the Bayesian probability of tree topology

given the data (14). In the second family, we

consider MCMC performing a random walk

on the continuous space of tree topologies and

branch lengths (3, 17). For both families the

moves that change the tree topology may be

nearest-neighbor interchanges (NNI), subtree

pruning and regrafting (SPR), or tree bisection

and reconnection (TBR) moves; see (14) for

an introduction to these transitions.

In order to measure convergence of the

Markov chain, we use the notion of mixing

time, T
mix

, which is standard in probability

theory (18). The mixing time is, for the worst

initial state T
0
, the first time that the total

variation distance between the distribution

of T
t

(i.e., the chain at time t) and the sta-

tionary distribution is at most 1/4. (The

constant 1/4 is somewhat arbitrary and

simply needs to be G1/2.) The above def-

inition of mixing time implies that for any

e 9 0, after eT
mix

iterations, the Markov

chain is variation distance ee from the

stationary distribution.

We can now state our main theoretical

result: There exists a constant c 9 0 such that

in the setting described above, given N char-

acters, D
Y

0 (D
1
,I,D

N
), generated from the

mixtures of (T
1
*,L

1
*

Y

) and (T
2
*,L

2
*

Y

) on n Q 5

taxa, with probability at least 1 – exp(–cN)

over the data generated, the mixing time of

MCMC algorithms with NNI, SPR, or TBR

transitions is at least exp(cN ).

The formal proof of this statement ap-

pears in (12). We follow with a heuristic ar-

gument. The algorithmic computations

below were performed for both the binary

CFN model (19–21) and the Jukes-Cantor

model. In both of these models, the branch

length a 0 at where a is the rate from state i

to j, for i m j, and t is time.

The convergence properties of a Markov

chain requires a detailed understanding of

the weighted geometry of the state space.

One aspect of the geometry is depicted in

Fig. 1. In this figure, two trees are joined by

an edge if they are connected by a single

NNI transition. One can see that our two

generating trees T
1

and T
2

have maximum

distance.

The second aspect of the geometry are the

posterior probabilities of tree topologies. The

posterior probability of tree topology T is

denoted by w(T ). It is natural to expect that

for long sequences, w(T) is essentially de-

termined by the branch lengths that maxi-

mize the expected log-likelihood. In other

words,

log wðTÞ
N

È JðTÞ 0 max
l
Y

EElogPrðDkT ; l
Y

Þ^

1Department of Statistics, University of California at
Berkeley, Berkeley, CA 94720, USA. E-mail: mossel@
stat.berkeley.edu 2College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332, USA.
E-mail: vigoda@cc.gatech.edu

Fig. 1. The space of phylogenetic trees on five taxa connected by NNI transitions. For the mixture
distribution on T1 and T2 in the CFN model with internal branch lengths a 0 0.1 and terminal branch
lengths a2 0 0.01, the yellow trees, with optimal branch lengths, had expected log likelihood J(T) ,
–1.887, the green trees had J(T) , –1.934, and the blue trees had J(T) , –1.986. For the Jukes-Cantor
model with a 0 0.1, the yellow trees had J(T) , –4.293, the green trees had J(T) , –4.338, and the blue
trees had J(T) , –4.544. Note, for SPR and TBR transitions, each yellow tree is connected to 12 other
trees but not to each other. Thus, to travel between the two yellow trees by NNI, SPR, or TBR
transitions, we need to traverse through a valley (i.e., trees with lower log-likelihood).
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where the expectation is over the probability

distribution m generating the data.

Figure 1 considers the expected log-

likelihood J(T) for data generated by taking

independent samples from our mixture m of

the two trees T
1

and T
2

on five taxa, where

all internal branches have length a 0 0.1 and

all terminal branches have length a2 0 0.01.

In Fig. 1, our generating trees have maximum

expected log-likelihood J(T), and the inter-

mediate trees in this space have smaller

expected log-likelihood. Thus, to traverse be-

tween the two maxima trees, we need to tra-

verse a valley. Such a valley implies slow

convergence, via mathematical techniques

known as conductance and isoperimetric

inequalities (18).

A similar picture holds for SPR and TBR

transitions. On trees on five taxa TBR and

SPR moves are identical. To traverse between

the trees with maximum expected likelihood,

T
1

and T
2
, we need to pass through trees with

smaller expected likelihood. This is the key

property that implies slow convergence. For

SPR and TBR transitions, tree T
1

and T
2

are

connected to 12 other trees but not to each

other.

In Fig. 2 we show how the maximum

expected log-likelihood J(T) varies with the

NNI distance from the generating trees T
1

and T
2

for varying values of internal branch

length a in the generating trees, where the

terminal branch lengths are given by a2.

The implications of mixture distributions

to phylogeny has recently received consider-

able theoretical attention (22, 23) and has

clear practical importance. A simple example

that often contains characters from multiple

trees is molecular data consisting of DNA

sequences for more than one gene. It is well

known that phylogenetic trees can vary be-

tween genes Efor example, see (24) for a

discussion^.
The numerical values of the constants a

and c are not explicit in our results. How-

ever, simulations suggest that even moderate

values such as a 0 0.1 and N 0 1000 have

very slow convergence, and in fact starting at

the tree T
1

or T
2

it will never visit any other

tree topology. Moreover, in both cases, the

likelihood plot suggests quick convergence.

For these parameters, the behavior of the

chain on data coming from mixtures or from

data generated from a single tree is indistin-

guishable for as long as we run our exper-

iments (millions of iterations). See fig. S1

(12) for log-likelihood plots illustrating these

examples.

For small trees one can hope to overcome

the slow convergence by using multiple start-

ing states. However, mixtures coming from

large trees may contain multiple species sub-

sets where one tree has T
1

as an induced

subtree and the other has T
2
. If there are k

such subsets, then about 15k random starting

points will be needed. Thus if there are 10

disagreement subsets, then 1510 random

starting points will be needed in order to

sample from the posterior distribution.

A popular MCMC program for phyloge-

ny, MrBayes (2), uses Metropolis-coupled

MCMC (25), which is designed to avoid

bottlenecks in the state space. A key open

question is to understand whether Metropolis-

coupled MCMC is successful in avoiding

bottlenecks created by mixtures. Resolving

this question will require more delicate and

detailed mathematical analysis. It is known

that Metropolis-coupled MCMC converges

exponentially slowly in some settings but

avoid bottlenecks in others (26), but even

in these simple cases a very detailed un-

derstanding of the state space is needed. If

Metropolis-coupled MCMC successfully

avoids the bottlenecks created by mixtures,

then it may serve as a useful tool for iden-

tifying data generated from mixtures.

In our setting, BMCMC methods fail in a

clearly demonstrable manner. We expect that

there is a more general class of mixtures where

BMCMC methods fail in more subtle ways.

These subtle failures may occur for many real-

world examples where the Markov chains

quickly converge to some distribution other

than the desired posterior distribution. Users of

BMCMC methods should ideally avoid mix-

ture distributions that are known to produce

degenerate behavior in various phylogenetic

settings (27, 28). A good practice is to de-

compose the data into nonconflicting signals

and perform phylogenetic reconstruction sep-

arately on each signal. Our work highlights

important unresolved questions: how to verify

homogeneity of genomic data and what phylo-

genetic methods can efficiently deal with

mixtures.
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Fig. 2. The depth of the valley between the generating trees T1 and T2 with five taxa. The chart
shows the maximum expected log-likelihood for different classes of trees for varying generating
parameter a where the internal edges have length a and the terminal edges have length a2. For the
green trees and blue trees from Fig. 1, we plot the value of J(T) – J(T1). For the yellow trees (i.e.,
the generating trees T1 and T2), this value is 0.
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